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Summary

Béckground

Non-pharmaceutlcal interventions are em ded within the pandemic influenza preparedness plans
of most countries and appear jn current WHO recommendations. However, the potential impact of
social distancing ‘measures, ‘s;uch-' as school closure reducmg workplace numbers, reducmg soc1al

have the potential to 1) foduce the overall and peak 1Hness attack rates and the consequential excess
mortality attributed to: andemlc and ’J) to delay the peak dally attack rate, allowing time to
distribute and adnymsj;

households school and workplace hubs and in the wider community. Using this model we
then examined the mitigating effect of non-pharmaceutical social distancing interventions
with specific emphasis on quantifying the effect which these alternative interventions have on
the time-course of an outbreak. Simulation experiments were used to examine each
intervention in isolation and in combination, under various initiation times, with triggers
determined by time since a defined community case load or by the case load itself. These
options were examined for reproduction numbers ranging from 1.5, consistent with some
estimates from previous pandemics, up to 3.5, which may be a worst-case scenario.



For plausible parameter settings, with an Ry of 1.5, pre-emptive school closure may reduce the
final attack rate by 72% (from 31% to 8.5%); applying school closure following a 2%
diagnosed case threshold being reached reduces the final attack rate by 40% (to 18%). We
find that for higher Rq’s a combination of intervention measure can be effective when single
measures fail, For an Ry of 3.5 a combined intervention including school closure, reduced
community contact, case isolation and 50% workplace absenteeism may reduce the final
attack rate by 84% (from 73% to 12%) when applied pre-emptively; reducing the attack rate
by 68% (to 23%) using a 0.1% diagnosed case threshold; and reducing the attack rate by 34%
(to 48%) for a 2% case threshold. These results for an Rq of 3.5 highlight the criticality of
intervention timing, showing that even a one week delay has a significant im on the

overall attack rate.

Conclusions

We have shown a strong relatlonshlp between the early, continuous ancl comblned apphcatlon
of non-pharmaceutical interventions and a reduction in the cumulative’ essﬂ; ttack rate and
the daily peak attack rate and a delay in the occurrence of this pe ‘gsults hold for all
Ry’s considered though they are more effective for lower Ry’ ition we show the time-
criticality of application of interventions under various trlgg wthresholds. Our results are |
supported by archival and statistical evidence from 43t nd conform closely to the
cffect seen, with respect to the strength, timing ard diration of similar interventions in
reducing excess deaths attributed to the 1918-19 pén lemic.“yThe results give guidance as to
which combination of non-pharmaceutical mterventlon ":may ‘be most effective in rrutlgatmg
an influenza pandemic and they hlghhgh & deletenous effect. of delaying their

implementation.

Introduction

Concern exists that the awém 5N1 mﬂuenza v1rus may beccome readily transmissible

[2- 8] and to capture pand
level [7]. In prepara‘uon

thétefore be ﬂle earhest pharmaceutlcal mterventlon used.

A number of countries [9-11] have adopted influenza pandemic plans which feature the
treatment of a significant proportion of the population with neuraminidase inhibitor (NI)
antiviral drugs, however their use to control influenza pandemics is an untested strategy.
Furthermore, while the World Health Organisation is establishing regional antiviral
stockpiles, it is likely that many countries will not have timely access to this stockpile. Field
data [12,13] and theoretical modelling also suggests that antiviral use during a pandemic may
be associated with the development of clinically significant drug resistance [14]; the use of
antiviral medication against H5SN1 is based on the success of these drugs against H3 and H1 in
trials, but there are no trial data for H5. Given these constraints on antiviral use and efficacy,
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together with the time delay for a safe and effective vaccine, the role of non-pharmaceutical

interventions becomes more important. Modelling [15] has suggested early interventions that -

increase social distancing may postpone the time to peak attack rates and limit the total

number of cases and deaths atiributed to pandemic influenza. This theoretical work has

recently been supported by an archival study of excess deaths attributed to the 1918-19
~pandemic in 43 US cities [16] and by the work of [17].

Given the hkely success‘ of social dlstancmg and the historical evidence for decreased
attributable deaths following early and layered interventions, we aimed to further investigate
different options for social distancing, based on the timing of, and the uiggers(, for, the

'mtroduction of these interventions, sequentially and parallel. We explored these options using

our modelled population provides us Wlth is a large e‘ e perlmental test-bed within -
which to capture the daily mobility of individuals as feunc developed nation urban settings,

as they move from home to workplaces and schools ona dsily cycle, revellmg the impact of
non-pharmaceutical interventions in a clearly: quantlﬁable manner. Furthermore, the
population is small enough to permit the pr ctic cquisition of actual, detailed population
demographic and mobility data giving rise to. el with a high level of realism.

Using this model of contact between; individuals and a stochastic model of person-to-person
influenza transmission, we simulated the progress of pandemic influenza after introduction
into the community, without! andated? interventions. We then conducted simulation
experiments to quantlfy th 'eﬂect of the above interventions, each in isolation and in

‘combination, under varigis 111t1at1on times, with triggers determined by time since a defined
community case load or;by the ' case load itself. These options were examined for reproductive
numbers ranging from, 135, consistent with some estimates from previous pandemics, up to
3.5, wlnch may be: ase scenario. '

y'dte more effective for lower Ry’s.

We show the time-criticality of apphcatxon of

mterventlons under various trigger thresholds. Our results are supported by the archival and
statistical evidence [16] from 43 US cities and conform closely to the effect seen, with respect to the
strength, timing and duration of similar mterventmns in reducing excess dea’rhs attnbuted to the

1918-19 pandemic.

Methods

The Model



We have constructed a geographic and demographic model of Albany, Western Australia
‘using a patch-based spatial structure [18-20], utilising Australian Bureau of Statistics Census
Collection Districts [21] as the finest level of spatial detail where each collection district
“consists of approximately 200 physically adjacent households. Each patch was populated
with a number of households according to the census data; the constituent households each
~ being uniquely populated with individuals to match the corresponding collectu)u district data,
identifying individuals by age classes -

The model has been additionally populated with a set of schools and workplaces, referred to
collectively as contact hubs. Govermnent data is used to obtain a comprehenswe list of

was assumed to be somewhat local in nature, wfdl:?‘c ntact between 1nd1v1duals from nearby .
patches (or the same patch) being relatively; more hkely to occur then those between
individuals whose home locatlons are far ap ;‘ n-any daytlme cycle when an md1v1dual is

households, workplaces and schools be correctly generated to match exactly with the unique
househsld demographic data provided by the census datasets, but also that the assignment of
individuals to schools and workplaces result in the correct movement of commuting
individuals between households and daytime locations (as reported in the available commuter
survey data). While the modelled schools and workplaces will not be identical to the real
Albany with respect to which actual individuals are assigned to which hubs, this demographic
and mobility model statistically matches the available data as exactly as is possible.

The allocation of individuals to households and contact hubs creates 'a.network data structure,
which is used by the simulation algorithm, explicitly moving individuals from home to
contact hub during the day phase of the simulation cycle. Individuals are then moved back to



their appropriate household for the evening phase. This mechanism thus permits the direct
modelling of population movement to schools and workplaces and allows for the explicit
modelling of influenza transmission within the home, within schools and childcare centres and
within the workplace. ' -

The Simulation Algorithm

Using this model, we conducted stochastic, individual-based spatial simulations of epidemic
spread, assuming that one new infection is introduced into the simulated population for the
duration of the simulation, ensuring that an epidemic ensues with every one of the (stochastic)
simulations run. The simulation proceeds in a sequence of 12-hour day/night cycles. Puring

account the cycle type (i.e. day/night, weekend/weekday), the individual’
- (whether they are susceptible, mfeeted and/or symptomatlc or lmmune) whether an adult

be in effect. During any cycle, 1nd1V1duals in the same location,
deemed to come into potential infective contact and infection t
between infected and susceptible individuals During each cy

n'(' may thus occur
the movements and

is assumed to be 1ndepende11t multiple successfil transmissions are the same as a single
successful transmission;, Age-based susceptlblhty factors were derived by calibrating to
seasonal influenza infection, data from a study in Tecumseh,” Michigan in 1977-1978 [22],
which is thought:te: ative age attack rates similar to the 1957 influenza pandemic [23].

For each cofitact event an infection state (either to remain susceptible or become infected) is
' randomly" hosen for the susceptible person based on the transmission probability. Once an
indiyidy -becq;;nes_ infected, the state of the infected individual proceeds according to an

;odel, which determines the degree, timing and duration of infectiousness and

infection
(indépen dently) the development of symptoms.

Modeliing Mobility and Contact

The movement of individuals and the contact between them is governed by a contact network,

as pictured in Figure 1. For each simulation cycle, individuals in the same immediate contact
group come into (potentially infective) contact, which can occur within a household, school,

workplace or the community, as discussed above. The overlapping memberships of
households and other contact groups thus form a connective social network through which
infection can spread. '
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he destmatlons being determined by populatlon density and distance from home
residential patches (this can include a “trip” to the person’s home patch). For each of these
community contact trips, the individual is randomly paired with another individual who also is
making a trip to the.same patch, and a potentially infective contact occurs.

" Modelling Transmission

Where an infected individual comes into contact with a susceptible individual, the probability
of the infection being transmitted is calculated according to the fransmission function see
Eqn 1. Given contact has occurred between an infectious person and a susceptible person, via



the above contact model, the likelihood of transmission is a function of the infectiousness of
the infected individual, the age-based susceptibility of the susceptible individual and the
overall virulence or transmissibility of the influenza strain. If a susceptible person is exposed.
to multiple infectious persons during a simulation cycle, it is assumed that the probability of
transmission from each one is mdependent of the others. Only one successful transmission is
required for a susceptible person to become infected. Successful transmissions beyond the
first have no further affect.

A new infection state (either to remain susceptible or become infected) is randomly chosen for
the suscept1ble person based on the transmission probab111ty Specifically, the probablhty of
transmission is the function:

Ptrmrs(L’;-[:) ﬁﬁv X 1'7'(”'1.5'(.[(’) X .S‘HSC(IJ)

s

where Py is the overall probability of transmission (a function of the state;of the'infectious
and suscepuble 1nd1v1duals) where ﬁv is the nominal mfectlousnh 8. 0f t_he vu'us strain,

study reported on rates in the Season_f”‘_
higher illness attack rates in the -;YOnger age groups may - suggest that adults were partlally

age-specific susceptiB‘i]i
settings (assuming: /4, = 0,(
model for seasonal influeniza: in order to model transmlssﬂjlhty of a novel pandermc influenza
strain f, is:iticreased (see the Baseline Determination section below).

Table 1 : Calibrated age-based susceptibility factors.

age(ly) | susc(l)
0-5 0.8272
6-12 0.6248
13-17 0.8800
18-24 0.7900
25-44 0.5609
45-64 0.4187
65+ 0.7900




Modelling Infection

Once an individual becomes infected, the state of the infected irdividual proceeds according
to an infection mechanisml which determines the degree, timing and duration of infectiousness
and the development of symptoms. We assume that infected individuals pass through a latent
incubation period of 1 day followed by an infectious period set at 5 days. We have also
assumed a constant infectivity for the infectious period, which is a simplification of a normal-
type infectivity distribution found in studies of viral shedding [24].

Infection is taken to last 6 days: 1 day latent, 1 day asymptomatic and infectious, 4 days
infectious (either symptomatic or asymptomatic). Once an individual has become infected,
they are assumed to be immune to re-infection for the duration of the simulation.

also that mﬂuenza symptoms develop one day into the mfectlous perlod with*2 20% of

iong adults.
These percentages were derived by summing the age-spemﬁc antibody tittes determined in
Table 5 of [25], giving aggregate totals for those under age 20 adults over age 20.

for the n0n~hosp1tallsed and hospttahsed p pulatlon respectively. These parameters are
ad_]usted so that the average hospital occupancy and length of patleut stay matches actual

Contact within the hoSpltal st eemed to take two forms. Firstly, we 1Ieat the hospital as a

Baselin Determination

We have assumed a scenario where pandemic influenza has broken out in another part of the -
world eg. South-east Asia and that our modelled population is aware of its likely arrival. To
achieve this we derived an effective baseline which assumes some level of spontaneous social
distancing, whereby people significantly moderate their contact behaviour in response to .
public health announcements and news reports of the morbidity and mortality of a prior
outbreak in another country. This pandemic behaviour contrasts with that which occurs with
seasonal influenza where overall mobility and contact patterns of asymptomatic individuals,
and even some who are ill and symptomatic, remain unaltered.



The baselme parameters were chosen to give nse to an epidemic with the followmg
characteristics:

43% of infections occurring in households, 28% in schools and workplaces, and 29% from
community contact. Based on seasonal influenza data [22] it has been estimated that 33% -
37% of transmission occurs in the household [3]. Given that public knowledge of a current
pandemic will induce behavioural changes, namely spontaneous social distancing, we believe
that it is reasonable to assume a lower level of community, school and workplace contact and
thus a relatively higher. proportion of household transmission. Without reliable data on the
relative proportions of hub and community transmission, we assume that they: ‘contribute
equally to out-of-household transmission. :

I

0.070 1.3 Original seasenal influenza callbratlon
0.083 - ‘1.5 Pandemic. low Ry,

0.116 120 Pandermc hlgh Ro

0.152 2.5

0.238 3.5

The reproductive number Ro_ s not calculated analytically, but is instead experimentally
determmed by con51derm i i This reproductive

Studies mchcate thatithe influenza pandemics of the twentieth century have an Ry between 1.3
and 1.7 [23] Note that'these Ry values have been estimated from historical data where various
intervention measures are k:nown to. have been active; in’ contrast our baseline scenanos

.....

epldermcp with a range of Rg’s of 1. 5 2.5 and 3.5. The higher Ry’s of 2.5 and 3.5 give
hypothetical “worst case” epidemics Wthh would occur with no explicit interventions. While
past influenza epidemics of this magnitude have not been observed, our results show that
plausible intervention measures can reduce these epidemics to effective Ry values in the 1.3 to
1.7 range.” The characterlstlcs of baseline outbreaks under each of the four Ry scenarlos is.
" given in Table 3.



Table 3 : Simulated outcome of baseline (no-intervention) epidemic
: for four Ry values

Ro=15 Ry=20  Re=23 Rp=3.5
mean 95% CI Mean 95%Cl mean 95%Cl mean - 95%CI .

Final infection rate (%) 40.7  +0.5 673 02 799 0.1 914  30.

Final attack rate (%) 34.1 +0.4 553 0.2 650 +0.1 73.4 +0.1

Peak ill population (%) 5.3 +0.17 172 40,17 284 017 469
Peak daily attack rate 262 #8.9 B840  +10.6 1401  £17.1 | 2498
Peak attack day 55 +2.3 36

Serial interval 298 +0.005 2.87

health mandated interventions have occurred and 1's this which we take as the baseline for
exammmg the efficacy of non-pharmaceutlcal teryention:

Modelling Interventions

We simulate four different non-pharmacs

ical intervention measures. These are as follows:

School closure. We as that;;j}ppon closure of a school, students and teachers spend
weekday daytime cycles me rather than at the school hub. This. means that no contact
takes place at that schogl hub,:but that these individuals will contact any other individuals
present in their househo]d .during the day cycle. We assume that no addifional community
iity contact is deemed to occur in all daytime cycles for active
individuals, regardless of whether they were present at a hub or home). We also assume that
if school losure would result in a child or young child being present in a household alone,

Increaséd case isolation. Our baseline assumption is that upon becoming symptomatic, there’
is a 50% chance that an adult, and 90% chance that a child, will withdraw to their household
(become inactive) for the duration of their infection (infectivity and symptoms are deemed to
cease at the same time). When the increased case isolation measure is in effect, this increases
to 90% for adults and 100% for children. We assume that withdrawn individuals make only
household contacts while withdrawn.

Workplace absenteeism. When this measure is in effect, each person attending a (non-school) -

workplace hub has a 50% chance each day of staying home instead of attending the hub (the
choice is made independently each day and applies only to that day). Individuals staying at
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home make no hub contacts but do contact all other individuals also at home during the day
cycle.

Background contact r eductzon When this measure is in effect, it is assumed that individuals

participating in community contact during a cycle make only 50% the baseline number of
effective contacts.

Results

In this report we present five main series of simulations: -

- 1. Baseline (no intervention) simulations, sho'wing the final attack rate,
which certain case count thresholds are reached.

2. For each of the four intervention measures, simulations showing the effect of delaying

the introduction of intervention.

3. For each of the four intervention measures,
maintaining interventions for different durations:

owing the effect of

4. For each of the four intervention measures?‘ i

ations showing the effect of different
levels of compliance to intervention me ‘

5. Simulations showing the effectiveness:of various combined intervention measures.

All simulation series have been conducted with epidemics have Rg values of 1.5 and 2.5.

Results for all simulated epjdemics. are averages of 40 runs, each with stochastic choices made
with a different random: er sequience. We present cumulative attack rate plots for each
intervention series; corresponding daily attack rate plots can be found in the Appendix.

Baseline Epidenﬁi@ and [rigger Thresholds

Table 3 glves 31gmﬁcant statistics of the baseline (no intervention) sunulated epidemics with
basw reproduc ve numbers of 1.5, 2.0, 2.5 and 3.5.

In ur simulations that examine the introduction timing of intervention measures, we assume
yention measures are triggered by a certain case count threshold being reached. For
this purpose we assume a ascerfainment effi ciency of 50%: in order for a case to be counted
towards an intervention trigger threshold, it is assumed that the following sequence of events
must occur:

The individual becomes infected.

The individual experiences symptomatic infection.

They present to a health care professional who is partlclpatmg in a monitoring scheme.
The infection is correctly diagnosed as pandemic influenza.

The case is correctly reported to the monitoring scheme.

N
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~ The 50% ascertainment efﬁmency is the conditional probability that 5) occurs, given that both
1) and 2) have occurred.

Table 4 : Baseline Case Thresholds and Trigger Timings

Re
1.5 2.0 2.5 35
Threshold % ‘ Cases .
' Diagnosed = Actual Days Before Threshold Reached
0.05 % ' 15 30 9 7
0.1% 30 60 13 9
0.5% - 150 300 24 16
1.0 % 300 600 30 19
2.0% 600 1200 37 23
40% 1200 2400 46 27
8.0% © 2400 4800 58
Duration 4, 8657 58
Final AR % 3 % 72 %

timing delays are geuerated as averages-ove 40_ fférent randomly seeded snnulatlon Tuns.

In the followmg, we present ﬁguresv aptur g the cumulative attack rates determined by
' snnulatlon for the range of sunul ion scenarios discussed above.
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Figure 2 : Timing of Intervention Implementation
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" approximately  half the

Intervention Timing

Figure 2 shows the effect of the four
intervention measures when introduced

‘at a number of .different notified

community case count thresholds,
ranging from 0.1 % to 4 % (20 to 1200
notified cases).

For epidemics with Ry of,1.5, all
measures are effective ifintroduced
without delay, with 90%;case olatlon

community case
duction after 30

' 'm
potential
reduction in final attack rate being lost..

cases) results

For epidemics with Ry of 2.5, none of
the simulated measures are highly
effective in reducing the final attack
rate, even when applied pre-emptively.
Early introduction of intervention
measures can however make significant
reductions in the peak daily attack rate.
If applied at or before the 0.1%
threshold, school closure, case isolation,
workplace absenteeism and community
contact reduction reduce the peak daily
attack rate from approximately 1250 to
900, 600, 1100 and 800, respectively.

Figures showing daily attack rates are

presented in the Appendix.
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Figure 3 ; Duration of Interventions
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Intervention Duration

Figure 3 shows the effect of the four
intervention measures when mamtamed for 4,

- 8 or 12 weeks.

For epidemics with Rg of 1.5, all measures
are effective if introduced without delay and
maintained longer than 12 weeks. Where
intervention measures terminated, at 12
weeks, ouly about half the jelo entlal ﬁnal

or the school closure,
community contact
the' relaxation of

For epidemics with Ry of 2.5, none of the
simulated measures are highly effective in

reducing final attack rate regardless of the

duration for which they are applied. The

main period of the epidemic occuis between

weeks 1 and 7; what effect the interventions

‘do have occurs before this time and there

appears to be no benefit in extending
interventions beyond 8 weeks in these
situations. As noted in the previous section,
the interventions do significantly reduce the
peak daily attack rates, provided that they are
maintained for at least 8§ weeks duration.
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Figure 4 : Levels of Compliance to Interventions
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Compliance to Intervention Measures

Figure 4 shows the effect of the four

“intervention measures, assuming different

levels of compliance.

The definition of “level of compliance” is
particular to each intervention measure:

¢ For school closure campliance levels

of less than 100%, 1t is ‘assumed that

Is ? om 0,15 100%.

jaseline assumption is that 50%

% for’ children) of symptomatic

) individuals  withdraw to  their

‘household for the period of their

infection; this increases to 90%

(100% for children). We simulate

adult compliance levels (withdrawal

probabilities) from 50% to 100%.

¢ Our workplace absenteeism measure
assumes that for each working day,
each working individual attends their
workplace with a certain probability.
We simulate compliance levels from
0 to 100%.

.o Qur community contact reduction
measure assumes that while the
measure is in effect, the number of
effective  contacts made: by
individuals is reduced by a certain
proportion. We simulate contact
reductions from 0% (no intervention)
to 100% (the unrealistic case of a
total cessation of contact outside of
household, schools and workplaces).

The results are unsurprising, with higher

. compliance levels giving greater reductions

in final attack rate and peak daily attack
rates.

One point worth noting is that for the case
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Figure 5 : Schoaol Closure Comblnation Interventions
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isolation measure, it appears that at Rg = 1.5
even modest improvements in compliance can
make a significant difference; increasing

household isolation from. 50% to 67.5%

* reduces the final attack rate from 25% to 15%.

Combinations of Intervention

In common with other simulation studies (eg
[3], [6], [15]), we find that no single social
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Figure 6 : Combination of All Interventions
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The resulting combined measure is highly ffective even with an Ry of 2.5, keeping the final
attack rate under 5%, providpd?}that the :measures are applied promptly and continuously.
Waiting for the 1% or highef trigger thresholds results in a significant loss in effectiveness.
Similarly, as soon as tl g:tleintq;'véﬁﬁons are relaxed, the epidemic resumes its unmitigated
course.

Discussion

We have shown a strong relationship between the early, continuous and combined application
of non—pl armacéutlcal interventions and a reduction in the cumulative illness attack rate, the
ttack rate and delaying the occurrence of this peak. These results hols for all
) n riumbers ¢onsidered but are more effective for the lower numbers. We show the
timescriticality of application of interventions under various trigger thresholds. Our results are.
supportéd by the archival and statistical evidence [16] from 43 US cities and conform closely
to the effect seen, with respect to the strength, timing and duration of similar interventions in
reducing excess deaths attributed to the 1918-19 pandemic. This latter result gives support to
our modelling approach and hence to the results which we have generated

Our results also align with the few epidemiology observations of the impact of school closure
on influenza epidemics. During the 1920 influenza outbreak on Kelley’s Island, Ohio [27],
households containing a school child were infected several days earlier than the rest of the
community. Furthermore, school closure was associated with a decline in population
incidence of the disease. More recently in Israel [6], a 30% reduction in paediatric
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presentations to health practitioners was observed during a two' week teachers’ strike which
occurred in the middle of the influenza season, compared to the periods before and after.

Many of the mitigation measures which will be used to reduce the scale of a future influenza
. pandemic require significant time delays before they may be initiated. Pohcy makers may
hesitate to introduce draconian legislation to close workplaces and shut down transport links;
individuals may be slow to moderate their behaviour and follow rigorous self-imposed social
distancing; time is required to manufacture vaccines; delays will occur before vaccines and
antiviral drugs are distributed and administered. We have shown that early school closure may
have a significant effect on slowing the rate of spread of an influenza pandemic injan urban
setting which has mobility patterns as found in the indus‘trialised worid This delajf the rate

pharmaceutical intervention measures.

The use of a highly detailed model of an
permits the effects of mitigation strategiesito
effect of timely interventions at the early stages ‘of an eplden:uc “The avmlablhty of detailed
data and its use in creating the model cle lyb indicates how non—pharmaceuhcal mterventmns

g schodl contact group sizes or smaller workplace group sizes; and reduction in
commumty contact is less effective if we assume larger school contact group sizes. " Further
details can be found in the Append1x ‘

In this paper, the quantity referred to as “Ry” differs from the proper definition of Ry. Instead
of referring to the average number of infections that would be caused by a typical infected
individual in a totally susceptible population, it refers to the average number of infections that
would be caused by a random member of the population, if they were to become infected in a

! We comment here only on alternative assumptions that lead to intervention measures being
70% (or less) as effective compared to our standard baseline parameters.
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totally susceptible populatlon In [3] this quantity is referred to as and In as far.as our
results are interpreted by “observable” quantities such as final attack rates®, daily attack rates
and case count thresholds, the precise definition of Ry is relatively unimportant; it is simply a
parameter representing the potential severity of the epidemic. In order to compare our results
with other studies, or historical estimates, or estimates made in the early stages of a new
pandemic, the relationship between Ry,g and Ry in our simulation needs to be determined.
Intuitively, for low Ry values Rpyg should underestimate Ry. For a stochastic, individual-
based spatial influenza simulation of the US and UK, analysns in [3] estimated that for Ry <
2.0, Rg~ Rpgna + 0.2). :

.It should be noted that these results are applicable to industrialised populatio s and are

range of scenarios which could be simulated w1th the current sin ‘
'Wlth modest addmons to the software and underlymg model;

e -Combinations of non-pharmaceutical intery [
© even hlghly vnulent epidemics. A fuﬂe 'study ::ﬂle p0551ble combma‘oons and hkely

e Assuming a fixed mortahty Tate .allows the current final attack rate results to
apprommate the expegte mortahty rates under various scenarios. A more detailed
pemﬁc mortahty rates or mortahty rates that vary according to

"introduction timings and duration could be further investigated for
4;_‘whloh create or avou:l epldermcs conszstmg of muitlple waves.
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We examined the sensitivity of our simulation results to 8 key model parameters. We
examined two alternative settings for each parameter, one significantly greater and the other
significantly smaller than the value used for the standard baseline (standard baseline values
are listed below in the Baseline Simulation. Model Parameters section), giving sixteen
additional sensitivity analysis scenarios {SAS). Table SI1 describes each SAS.



~ Table SI 1 : Sensitivity Analysis Scenarios

.. - Values
Par.ameter Description (low, standard, high)
 Behavioural Scenarios s
| Number of individuals randomly
Background
- | contacted in community per day by - (2,4,8)
Contact
‘ .| active individuals.
Class Size - | Size of contact group in school hubs. (5,10,20)
Workgroup Size Maximum size of contact groups 1n (5,10,20)

workplace hubs.

Probability that an adult individual
will withdraw to household upon

Nlness experiencing symptomatic infection.
Withdrawal | Children always withdraw with
probability 0.9, or 1.0 if case
igolation is in effect.
Biological Scenarios
Infective Number of days during which
Duration infected individuals are infectious
Asymptomatic - | Relative infectiousness of (0 25.0.5.0.75)
Infectiousness | asymptomatic infected mdlwd T
Asymptomatic : ‘
Proportion (0.1,0.3.04)
: Delay in appearance ‘of's sym toms : .
Sg:g;g}r:l from 1nfect10n (all: mfected cases (36 hrs, 48 hrs, 60 hrs)

For, each of the baselme SAS scenarios described in Table SII: §, or [i’)\,.ms parameter
e (See Eqn 1) was determined to ensure that the resulting epldenuc had an Ry
value of 1.5 .

4. For each of the SAS Ry = 1.5 scenarios, the four different. intervention measures
examined in the main article were simulated, and the results compared to the baseline -
no intervention Ry = 1.5 scenario. It is assumed that the intervention measures are
applied pre-emptively from the beginning of the simulation. Table SI3 shows the
sensitivity of each intervention measure to each SAS. For each intervention measure
and each SAS, the percentage reduction in final attack rate is given. Where the SAS
leads to a final attack rate reduction differing by greater than 30% from the reduction
given by the standard baseline, the proportional difference is also given (in red where



the SAS results in a less effective intervention, and in green for a more. effective
intervention). o : - '

Table SI2 : Sensitivity Analysis Scenario Baseline Epideniic Characteristics

R Serial % Home % Hub % Community
0 Interval Infections Infections - In{gctions

Standard baseline -1 1.29 5.98 46
2 134 5.91 - 50
Background Contact 8 | 127 6.00 39
. 5 |1.37 6.04 49
ClassSize | 29 1119 5.84 40 -
. 5 127 5.99 48
Worlkgroup Size 20 | 127
Tllness Withdrawal | 025 | 1-29

)
Infective Duration | 30 .24

28 24

Asymptomatic 27 ‘ 23
Infectiousness 31 25
Asymptomatic 30 24
Proportion - 35 26

27 24

Symptom Latency 39 95

T




Table SI 3 : Intervention Measures Sensitivity (at Rg = 1.5)

' 50% 50%
School 90% Case Community
- Closure - Isolation : Work_pl_zfc_e -~ Contact
o . Absenteeism Reduction
Final Attack Rate Reduction %
Standard ' ,
. 75 02 25 60
baseline
Background 2 94 92 34 (+0.36)
Contact 8 36 (-0.50) 94 19
. 5 44 (-0.40) 95 37 (+0.47)
Class Size 20 |91 7 15 (-0.41) -
Workgroup 5 174 89 - 12(-0.52) =
‘Size 20 66 92 38 (+0.50) =
Illness 0.25 66 97
- Withdrawal 0.75 84 72
Infectious 3 73
Duration 8 81 78
Asymptomatic 0.25 78 70
Infectiousness 0.75 66 52
Asymptomatic 0.1 74 56
Proportion 0.4 67 43
Symptom 36 79 41 (+0.62) 84 (+0.41)
Latency 60 75 21 52 '
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* Additional Results

Figure 7 : Comparison of School Closure Trigger Conditions
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Figure 7 compares the two schdol closure-.pb]icies and relates them to a theoretical policy of
closing schools after a dela ' {0, 2 or 6 weeks) from the first case entering the diagnosed

population. For an Rg of#15; waltmg for 0.1 % (30) diagnosed community cases or waiting

for 1 case in each school 1s roughly equivalent to closing schools 2 weeks after the beginning

of the epidemic, restlting: final attack rate of approximately 11%. Waiting for 2% (600)

community cases;or \ in each school is approxlmately equivalent to closing schools 6

weeks after the beginning of the epidemic, resulting in a final attack rate of approximately

19%. Waiting for 8%:(2400) community cases, or 100 cases in each school results in a final
attack rate of approximately 28%.
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Figure 3 : Duration of Interventions
(Daily Attack Rates)
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Figure 4 ; Levels of Compliance to Interventions
{Dally Attack Rates) '
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: Flgure 5 : School Closure Combination interventions
(Daily Attack Rates)
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Baseline Simulation Model Parameters

Transmission and Infection Characteristics

infection to end of -
symptoms and

parameter ~ meaning value(s)
Jis Fundamental transmission :
probability - Ro| By
: 1.3 ] 0.07
1.5
2.0
2.5
susc(ly Age-based susceptibility
factor, a function of the :
potential infectee’s 0.8272
(susceptible individual L) 1 0.6248
age. ' ' .88
0.79
0.5609
0.4187
0.79
trans(ly) Reduction ansmission | 1.0, if I; is symptomatic;’
- probability, for 0.5, if I; asymptomatic
, : asymptomatic infectors.
Pr(asymptomatic) |:Probability; that an 0.2, for ages 0-18;
individual experiences an | 0.32, otherwise
rasymptomatic infection.
Transmissibility Delay “{. Period of time between 24 hours
hfection and the point at
which an infected
individual becomes
infectious.
Period of time between 48 hours
infection and onset of
symptoms.
Infection Duration Period of time from 6 days

infectiousness.
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Contact and Behaviour_al Parameters

parameter

meaning

value(s)

| Pr(withdrawal)

Probability that a
symptomatic infected
individual will withdraw to
household upon-
appearance of symptoms.

0.9 for ages 6-17;
0.5 otherwise,

withdrawalP eric_)d

Period of time, from
appearance of symptoms,
that a withdrawing
individual with remain at
home

4 days

- [ BCC

Background Contact
Count. Number of
effective community

each mdividual
participating in commumty
contact).

contacts made per day (for

maxClassSize

Maximum size of
groups in schools,

max WorkgroupSize

10

seedRate

1.0

seedDuratien

: hich infections are

begm‘ﬁmg of simulation in -

365




