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Abstract

Background: The spread of Bluetongue virus (BTV) among ruminants is caused by movement of infected host animals or by
movement of infected Culicoides midges, the vector of BTV. Biologically plausible models of Culicoides dispersal are
necessary for predicting the spread of BTV and are important for planning control and eradication strategies.

Methods: A spatially-explicit simulation model which captures the two underlying population mechanisms, population
dynamics and movement, was developed using extensive data from a trapping program for C. brevitarsis on the east coast
of Australia. A realistic midge flight sub-model was developed and the annual incursion and population establishment of C.
brevitarsis was simulated. Data from the literature was used to parameterise the model.

Results: The model was shown to reproduce the spread of C. brevitarsis southwards along the east Australian coastline in
spring, from an endemic population to the north. Such incursions were shown to be reliant on wind-dispersal; Culicoides
midge active flight on its own was not capable of achieving known rates of southern spread, nor was re-emergence of
southern populations due to overwintering larvae. Data from midge trapping programmes were used to qualitatively
validate the resulting simulation model.

Conclusions: The model described in this paper is intended to form the vector component of an extended model that will
also include BTV transmission. A model of midge movement and population dynamics has been developed in sufficient
detail such that the extended model may be used to evaluate the timing and extent of BTV outbreaks. This extended model
could then be used as a platform for addressing the effectiveness of spatially targeted vaccination strategies or animal
movement bans as BTV spread mitigation measures, or the impact of climate change on the risk and extent of outbreaks.
These questions involving incursive Culicoides spread cannot be simply addressed with non-spatial models.
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Introduction

The past decade has seen the development of increasingly

detailed simulation models aimed at capturing the transmission

dynamics of directly transmitted diseases, such as Foot and Mouth

Disease and Classical Swine Fever in livestock [1–4] and human

pandemic influenza [5–7]. Such models have been used to

establish the effectiveness of intervention strategies and to develop

containment and control strategies (e.g. for human pandemic

influenza [5–7]) and eradication strategies (e.g. for Foot and

Mouth Disease [1]).

The development and use of mathematical disease models of

insect-vectored human diseases dates back over a century to the

work by Ross on malaria transmission [8]. However, the

development of data-rich simulation models for insect-vectored

diseases has advanced more slowly, mainly due to the additional

complexity inherent in representing the dynamics of both host and

vector populations, and pathogen transmission between them. An

additional layer of complexity is introduced if the goal is to model

the spatial spread of a pathogen over a landscape since both vector

movement and habitat-dependent insect vector abundance

potentially affect spatial disease spread. Faster moving vectors

clearly have the potential to increase the rate of disease spread; but

disease spread may also depend on the population density of

vectors, since greater vector numbers mean greater transmission of

pathogen between vectors and host as well as greater numbers of

vectors moving to new locations. For example, high densities of

mosquitos in particular locations are known to lead to disease

transmission ‘hot spots’ and are often the focus of targeted control

measures for mosquito vectored diseases [9]. Hence spatial vector

population features need to be realistically modelled within a

modelling environment if it is to be used to analyse the

effectiveness of spatially targeted intervention strategies.

In this paper we describe and apply a model that couples insect

vector dispersal with climate dependent insect vector population

dynamics, with the goal of modelling vector-born disease spread in

areas that exhibit what we refer to as an incursive vector

population. By an incursive vector population, we mean that the

presence or absence of vectors in different parts of the landscape
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can change seasonally or from year-to-year in a way that depends

on vector introduction and dispersal.

Our motivating example of an incursive vector population is the

biting midge Culicoides brevitarsis which is present in northern

and eastern Australia and is a vector for several viral livestock

diseases, including Bluetongue, which is caused by Bluetongue

Virus (BTV), and Akabane [10]. C. brevitarsis survival and activity

is temperature dependent; C. brevitarsis is present throughout the

year in northern areas of New South Wales (NSW), but is unable

to survive the cold winter period in southern areas [11,12]. The

spatial distribution of C. brevitarsis within NSW thus varies

seasonally during the year, and from year to year, depending on

spatiotemporal variation in temperature and wind, as midges are

transported from northern areas into more southerly areas where

they establish breeding populations in warmer months, and

become locally extinct over winter. This Culicoides movement

scenario is also reflective of past, well-documented incursions of C.
imicola carrying BTV into the Balearic Islands (Spain) from North

Africa [13], the probable wind dispersal of Culicoides between

Greece, Turkey and Bulgaria [14] and what may occur if a new (to

Australia) competent vector were to arrive from Indonesia, East

Timor or Papua New Guinea and establish itself in Australia, see

[15].

Incursive vector populations may be contrasted with endemic
populations. An endemic population is permanently established

and a breeding cycle will be sustained without introduction of

transported population, even if the population falls to very low

levels. The Culicoides obsoletus group BTV vectors are an endemic

population in Northern Europe, which carried outbreaks of BTV

in the summers of 2008 and 2009. In these outbreaks, once the

warming created a vector population capable of sustaining BTV

transmission, BTV spread was limited only by vector movement

and not by temperature-dependent vector population dynamics.

The distinction between incursive and endemic vector popula-

tions is very significant from a modelling perspective, as the

endemic scenario allows the simplifying assumption that vector

population distribution does not depend upon vector movement,

and so can be treated as a static model input. In the incursive

vector scenario, this assumption is invalid, and both vector

population dynamics and dispersal need to be modelled in

tandem.

A simulation modelling methodology which permits spatially-

explicit modelling of wind and flight movement of C. brevitarsis
dispersal, together with its habitat and climate dependent

population dynamics, is presented. The particular incursive

scenario in coastal NSW is used to illustrate the development

and application of the modelling methodology. Extensive trapping

over the past four decades has resulted in high quality data which

reports the arrival time of C. brevitarsis as it spreads southwards

along the NSW coastal plain [11,16–20]. These data permit the

simulated midge incursions produced by the model to be validated

by comparison with the field-derived datasets, and these results are

presented. For other Culicoides species their specific habitat- and

temperature-dependent characteristics would need to be modelled

and the simulation model presented here re-parameterised. This is

a region without a resident population of competent BTV midge

vectors. C. brevitarsis is a competent tropical midge species

common to northern Australia but populations of this midge

cannot be sustained in most of NSW due to low winter

temperatures. Annual incursions occur from endemic areas to

the north, as the temperature increases in spring. This southward

incursion scenario is significant in that it may act as a BTV

conduit, allowing the virus to spread from endemic regions to the

north to vulnerable, disease-free sheep-rearing areas in south-east

Australia.

1.1 Background
Various species of Culicoides biting midges are present

throughout the world with the exception of Antarctica and New

Zealand. Where they are present, Culicoides can act as vectors of

BTV, Akabane virus (and other viruses of the Orthobunyviridea

family) and African Horse Sickness [10]. Competent Culicoides
species are those capable of viral transmission, with susceptible

female midges becoming infected following blood-feeding by

biting an infectious ruminant host animal. As trans-ovarial BTV

transmission (where infected females transfer the virus to their

offspring) is unknown in Culicoides, onward animal infection

occurs when infectious midges subsequently feed a second time on

susceptible, uninfected animals.

Bluetongue is a significant disease from an animal health and

economic perspective world-wide. In cattle, BTV infection is

generally asymptomatic but its presence limits export to certain

markets. In sheep, BTV infection is symptomatic and induces

significant mortality rates, with 30% mortality rates recorded for

epidemics in Spain, for example [21]. BTV is endemic in northern

Australia but disease free status exists in the southern sheep rearing

regions. The vectors considered to be most important in Australia

are C. fulvus, which is an efficient vector but is restricted to areas

with high summer rainfall and does not occur in the drier sheep-

rearing areas of Australia; C. wadai, which is also an efficient

vector that probably spread from Indonesia in the 1970s and has

extended its range from an initial area near Darwin into Western

Australia, Queensland, and New South Wales; and C. brevitarsis,
which is a competent but inefficient vector for the BTV strains

present in Australia but is more abundant than C. fulvus or C.
wadai [10]. C. brevitarsis is a midge species that relies on cattle

dung for ovipositioning (i.e. egg laying) and is endemic in northern

Australia, but not in the sheep-rearing areas of Southern Australia.

In an Australian setting, the future spread of BTV may be

impacted by changes to weather patterns [22], the incursion of

new competent insect vectors from Asia (i.e. new species of

Culicoides midge carried by the wind) [15] or the incursion of new

serotypes of BTV (which might have different competence

characteristics) from Asia via midge dispersal. The risk to both

commercial export markets and animal health caused by high

mortality rates in sheep populations makes Bluetongue a disease of

significance.

The spread and establishment of BTV in northern Europe [23]

demonstrated a previously unforeseen ability of BTV to become

endemic in cooler climates. This has resulted in increased research

activities in virus transmission, on detailed reporting of these

outbreaks [24,25] and in initiation of modelling studies, for

example [26–28].

Culidoides midges are known to be dispersed by the wind, often

over large distances over water and lesser distances over land.

Studies have found long-range spread across the Mediterranean

Sea from North Africa to Spain [13], and from Indonesia and

Papua New Guinea to Australia [15,29], for example. A number

of studies have examined long-distance movement of Culicoides
via a Bluetongue virus (BTV) spread surrogate [13,14]. These

studies have used serological sampling of what are thought to be

the index animal cases in previously disease free areas. The date of

sampling is known and was used to estimate the date of infection.

Using temperature data and experimentally derived data on the

BTV incubation period the arrival time of BTV carrying midges

has been estimated. Prevailing winds have then been used to

determine the source location of the midges. If the location has
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animals with the same BTV serotype and the only route of BTV

spread could have been via transportation by the midge vector

(i.e., no animal movements from possible source locations to the

arrival location of the virus) then a likely path of midge movement

is detected. Data from such studies indicate distances of greater

than 100 km over water (and lesser distances over land) are

possible, indicating that any modelling of midge or BT spread

should include a wind-driver midge dispersal component.

C. brevitarsis occupies a particular environmental niche in that

it lays its eggs solely in cattle dung [30]. Like other insect vectors,

only the female midge bites the mammal host, as it requires blood

meals to aid egg development. The population dynamics of both

mosquitoes and midges are highly dependent on weather

conditions, particularly on temperature. Each species has an

optimal temperature range where flying, feeding and mating

activity is at its maximum, which also minimizes the egg

development period following mating. Temperature also affects

the extrinsic incubation period, the time from insect infection (by

biting an infected host animal) to becoming infectious itself and

thus capable of virus transmission to a new, possibly uninfected,

host.

Methods

2.1 Modelling Landscape via Discrete Cells
The aim of the simulation model is to predict the spread and

population establishment, growth and die-out of Culicoides midges

over the landscape through time. This is achieved by representing

the state of the landscape – that is, landscape information which is

relevant to midge spread and population dynamics including

habitat-dependent features – in a data structure. A simulation

algorithm is then used to capture the physical processes which

contribute to insect spread using computer software which updates

the data structure to reflect the physical system changes, from one

simulation time step to the next.

The landscape is represented by dividing it into a regular array

of spatial cells of similar area, depending on the resolution

required. In this study a graticule (i.e. a grid based on lines of

latitude and longitude) with 0.05 degree spacing have been used,

giving cells that are approximately square with 5 km sides, each

with an area of approximately 2500 hectares. The 5 km cell

spacing is small enough to represent the spatial heterogeneity in

climate (such as altitude dependent temperature) and to represent

midge dispersal (as discussed in subsection 2.3 below), while at the

same time being large enough to make simulation time tractable.

Single cells are the finest level of spatial detail captured by the

simulation model and cells are considered to have uniform

characteristics throughout their area. Each cell has a centroid

location (latitude/longitude co-ordinates and altitude) and addi-

tional information which captures the state of the landscape

represented by the cell. A summary of the data contained in each

landscape cell is given below; further details are given in

subsequent sections where the simulation processes that update

each cell state are described.

Geographical data includes latitude, longitude, altitude and

area. The relative location of cells determines distance and

direction between neighbouring cells, which influences the spatial

dispersal of midges by prevailing wind conditions.

Weather data includes daily mean temperature, wind speed, and

wind direction. Weather data enters the model as an input data

time series. Temperature, including lower temperatures due to

altitude, influences the model in multiple ways including the insect

reproduction rate, survivability and biting and movement activity.

Wind drives vector dispersal.

Vector habitat data. For C. brevitarsis the key characteristic of

the habitat is whether cattle are present or not within each cell, as

cattle are necessary for ovipositioning, as C. brevitarsis only lay

eggs in cattle dung [30], and also for females to blood feed

(necessary for egg development within the female).

Vector population data. Two population density variables, for

the adult and immature stages (egg, larvae, and pupae collectively),

represent the C. brevitarsis population state of each cell. Unlike

geographic, weather or vector habitat data, the vector population

data represented in the model are endogenous state variables

which both influence, and are influenced by the simulation

dynamics.

Cell data fields are given in Text S1, Tables S1.1 and S1.2.

Simulation methodology. As the landscape is approximated

by a discrete array of cells, the time course of midge spread over

the landscape is characterized by local processes that occur within

individual cells and processes that model the movement of insects

between cells. Time is also treated discretely; state changes (called

transitions) occur only at the discrete time points when one time

period changes to the next, and the state variables remain fixed for

the duration of each period. The dynamic behaviour of each

discrete landscape cell is modelled by a corresponding automaton,

a mathematical device which captures the changing state of a cell

based on its current state and the state of neighbouring cells with

which it interacts [31]. An automaton consists of state information

together with a transition function which models how the state

changes through time. This is an automata theoretic approach to

modelling the inherently continuous behaviour of a complex

system; which in this application involves the location of the

midges in discrete time and space.

This conceptual automata theoretic model is implemented in

software and the dynamics of the midge population (involving

population growth and decline) together with vector movement is

realized by discrete event simulation [32]. The landscape cell

automata state data and the transition functions are used by the

simulation algorithm to update the state of each automaton at an

appropriate discrete time step, capturing the dynamic behaviour of

the physical system being modelled. An outline of the simulation

algorithm is given in Text S1. The specific dynamic processes that

determine Culicoides spread, namely the changing weather, insect

population dynamics, and insect movement between cells may be

treated as sub-models which are combined together to produce the

overall simulation system. These sub-models are depicted sche-

matically in Figure 1 where 4 discrete cells are pictured for

illustrative purposes, and are described in detail in subsequent

sections.

Model timelines. The main simulation algorithm operates

by updating the Culicoides population within each landscape cell

in a daily cycle. Culicoides population dynamics and self-propelled

midge movement are calculated on a daily basis, while wind-

driven midge movement is calculated on a finer 3-hourly cycle,

with 8 such cycles occurring within each daily cycle.

Simulation system implementation. The simulation sys-

tem has been implemented in the Java programming languages

and this computer code inputs structured text files containing

landscape and weather data sets and scenario descriptions, and

outputs text files containing simulation results. These outputs are

then processed by a suite of Python-based scripting tools to

generate the maps, population time series charts and tabular

results presented in this paper. The statistical analyses described in

Section 2.4 ‘‘Quantifying agreement between simulated and

observed midge spread’’ using Cohen’s Kappa were performed

using the standard ‘‘irr’’ library of the R software package.

Model of Bluetongue Vector Dispersal
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2.2 Weather
The distribution of vectors over the landscape and changes in

vector density over time is influenced by the weather, specifically

temperature and wind speed and direction. This variability is

taken into account through the spatial weather model.

Temperature Data. Daily maximum and minimum tem-

peratures were obtained from the Australian Bureau of Meteorol-

ogy for an approximately 5 km square cell grid covering the land

area of Australia (including NSW), for the period 1980–2000. This

data set is based on automatic weather station (AWS) and

topographic (altitude) data and uses a Barnes successive correction

technique to interpolate temperature at each grid point [33,34].

Mean daily temperatures, which are well approximated by the

averaged daily maxima and minima, were used as inputs for

temperature dependent population dynamics sub-model (de-

scribed below). Temperature also influences midge flight behav-

iour with research indicating that C. brevitarsis midges take flight

when the temperature is 18uC or greater [20]. Days when the

mean daily temperature was greater than or equal to 18uC were

regarded as ‘‘midge activity’’ days, a concept used by the midge

dispersal sub-model (described below).

Wind Data. Data from the Australian Bureau of Meteorology

for all automatic weather stations (AWS) in NSW for the 1980–

2000 period at three-hourly resolution was obtained. Data from

133 AWS were used – a map showing the distribution of weather

stations is included in Text S1, Figure S1.2. This wind speed and

wind direction data (measured at 10 m above ground) was used in

the midge dispersal sub-model. Each landscape cell used wind data

from the nearest AWS. Intermittent gaps in AWS data were

overcome by taking data from the nearest AWS that had valid

data for the gap period.

2.3 Culicoides Population Dynamics
When significant cattle numbers are present, the key determin-

ing factor in C. brevitarsis population density is the climate. In

areas where the climate is favourable, specific Culicoides species

may be present and active all year round [35]. In other areas, the

Culicoides population, and its activity, may become low during

winter as a result of lower temperatures. In still other areas, the

climate may support incursions of Culicoides populations during

summer, but extended cold winters may render them locally

extinct; this is the case in New South Wales, Australia which is the

scenario under consideration here [11,35].

The characteristics that constitute vector habit vary between

Culicoides species, however cattle are necessary for C. brevitarsis.
The rate at which C. brevitarsis populations can grow and the

maximum density attainable depends critically on the presence of

cattle and the availability of dung for ovipositioning (i.e. egg

laying) [30], in addition to the temperature. In areas of the

landscape being modelled where cattle are absent, such as in

National Parks and urban areas, no C. brevitarsis population can

be sustained and any insects dispersed into these areas fail to

establish a breeding population. Any transported midges that

come to rest in these cells are assumed to die without having any

further effect on the simulation. Note that these cells can carry an

airborne population, so these areas do not form a complete barrier

to midge spread.

When supplied with an initial insect population and daily

temperature time series, the population dynamics sub-model

described below generates adult and immature stages of the midge

population as a time series for each landscape cell. Temperature-

dependent midge population dynamics generated by the simula-

tion sub-model are presented below, in the subsection entitled

Climate scenarios.
Each landscape cell may be in one of three insect population states:

a) Active; indicating that midges are present in the cell and are

actively flying (necessary for feeding and mating) and that the

breeding cycle is on-going. In cold conditions, breeding and

development rates may slow to the point where they are

exceeded by the adult death rate, in which case the

population will fall, and may become inactive.

Figure 1. Schematic overview of the simulation model components. The dynamic state variables (population densities) are shown in black
type. The processes midge movement modelling midge movement are shown in purple; processes modelling midge population dynamics are shown
in green.
doi:10.1371/journal.pone.0104646.g001
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b) Inactive; indicating that adult population numbers are very

low. If temperatures subsequently rise, a cell in the inactive

state may become active as immature Culicoides emerge from

their pupal stage. Alternatively, sufficiently cold and sustained

conditions may kill or render unviable all adult and immature

Culicoides, making the insect population extinct within that

cell.

c) Extinct; indicating that no viable Culicoides are present in

any life stage (adult, larvae, or pupae). As a result, improving

changes in weather or habitat conditions will not cause any

change in the cell population state. However, if new midges

are transported into the cell and conditions are favourable,

the cell state may then transition into an active state. It should

be noted that while the active state can be detected from

midge trapping programs, the inactive and extinct states

cannot be distinguished in this way. The extinct population

state may be inferred retrospectively from the lack of trapped

midges once the temperature has risen to the point where any

active population would be detected.

These states and the possible transitions between them are

illustrated in Figure 2.

Cells in the active and inactive states have two additional

numeric attributes representing the population density of the adult

female (pa) and immature (pi) Culicoides (taken to include all pre-

adult stages) in the landscape cell. We did not attempt to estimate

absolute midge population density. Instead, we assume that at any

given time the numerical ‘‘size’’ of the simulated midge population

is some proportion of the maximum population in the cell. We

have set the population scale by defining the (maximum) carrying

capacity of the immature population of a cell to have an arbitrary

numerical value of 100. Other midge density values that appear in

the model are interpreted as relative to this value.

It was assumed that population density evolved according to a

logistic population model [36,37]. This is a standard model of

population dynamics that exhibits a maximum growth rate when

unconstrained by resources, but where the growth rate decreases

with increasing population density, representing increasing com-

petition for some finite resource required for growth. In the model

three on-going processes modify the density of the adult and

immature populations: the oviposition of eggs by adult females; the

maturation of eggs into adults; and the death of both adults and

immatures. The rate at which these processes occur is temperature

dependent. In the process descriptions below, rates are given for

key temperatures, and the dependency of the rate on temperature

were modelled as piecewise linear functions of temperature (i.e.

rates were interpolated linearly between key temperature values).

One particular temperature plays a role in several processes – we

refer to this as the low temperature activity parameter (LTAP). The

LTAP value of 7uC was determined using data distinguishing C.

brevitarsis climatic zones, as described below in Section 2.4 (in the

subsection entitled Population initialisation).

1. Oviposition. Adult female Culicoides perform a cycle of blood

feeding followed by oviposition (egg-laying). The rate at which

adult midges lay eggs (denoted by parameter value b) in

Figure 3 depends on temperature. We assumed (from

[12,38,39]) that a maximum oviposition rate of 3.9 viable eggs

per adult female per day at temperatures of 25uC and above, a

rate of 1.1 at a temperature of 18uC, and a rate of zero at the

LTAP temperature. These rates were derived by dividing the

fecundity (number of eggs layed per oviposition) by the mean

gonotrophic period, and further dividing by two (since half of

the eggs laid are destined to emerge as males and are not

included in our adult population density measure which

represents only females [12]). C. brevitarsis fecundity averages

31.3 eggs per oviposition [38]. Data on the gonotrophic period

and its temperature dependence in C. brevitarsis is sparse; we

assumed that the gonotropic cycle length varies from a

minimum of 4 days to 14 days based on studies of C.
sonorensis [39]. The temperature point of 25uC giving the

maximum oviposition rate corresponds to the temperature of

the shortest gonotrophic period reported in [39], while the

18uC value corresponds the minimum temperature at which C.

brevitarsis have been observed to fly (and thus to oviposit).

Rather than assume that oviposition ceases exactly at 18uC, we

assume that it decreases gradually to zero at the LTAP value, at

7uC.

1. It was assumed that there is a limiting population level for

immature midges, which in the case of C. brevitarsis is

determined by the availability of cattle dung, which provides

habitat and nutrition for immature stages; density limited

Culicoides larval development is reported in [40]. It was

assumed that the number of viable eggs laid decreases with

increasing immature population density, since eggs laid in

already crowded dung will fail to develop due a lack of

available nutrition. An alternative method of modelling the

immature population density limit would be to increase the

immature death rate in crowded conditions; however it is not

obvious that this would be a more accurate assumption, since it

might be the case that later-laid eggs do not significantly

decrease the mortality of more developed larvae (or pupae)

originating from earlier laid eggs. As explained previously, an

arbitrary value of 100 was chosen for the limiting immature

population density, and all other absolute population quantities

are relative to this value.

2. Maturation. Culicoides larvae hatch from eggs and develop

into pupae, from which they emerge as adults. Based on

experimental data for C. brevitarsis [12], the maturation rate

(denoted m in Figure 3) was assumed to be 11 days at 36uC, 37

days at 18uC, and zero at the LTAP temperature.

3. Death. Adult and immature Culicoides were assumed to die at a

given temperature dependant rate. There are no published

estimates of adult lifespan for C. brevitarsis: based on data on

C. sonorensis [39], it was assumed that the mean lifespan varied

from 4 days at 25uC, to 14 days at 12uC and below.

Estimates of immature midge lifespan and dependence of

lifespan on temperature were based on experimental data

where cattle dung that had been exposed to oviposition was

collected and subjected to different temperature treatments

Figure 2. Landscape cell vector population state. Landscape cell
population states are pictured as boxes; arrows indicate transitions
between states with arrows labelled according to the events or
conditions that trigger the state transition.
doi:10.1371/journal.pone.0104646.g002
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[12]. Based on total numbers of adults emerging from dung

held at 17uC for 28 and 42 days, it was assumed that immature

C. brevitarsis had a mean lifespan of 30.5 days. Note that the

immature ‘‘lifespan’’ is the mean time when an immature C.
brevitarsis (egg, larva, or pupa) dies, given that it has not

matured into an adult. While total numbers of emerging

midges increased with increasing temperature above 17uC (up

to 25uC), this might be due to an increased maturation rate

(with more C. brevitarsis maturing into adults rather than dying

in immature stages) rather than increased lifespan. We

therefore adopted a simpler model with constant immature

lifespan above 17uC. Similarly, the experimental data showed

that mortality might increase at lower temperatures; however

the numbers of emerging midges were too low to allow

quantitative analysis of lower temperature lifespan. Conse-

quently we assumed that immature lifespan decreased to 1 day

at the LTAP value.

We note that the use of a single temperature at which

oviposition and maturation ceases is a simplification of the actual

temperature dependencies; however this model was able to

adequately reproduce the observed climatic zones. A more

sophisticated model could be substituted if additional C. brevitarsis
data becomes available.

The relationship between these processes is illustrated in

Figure 3. The population dynamics model variables and param-

eters, along with parameter values and supporting references are

summarised in Tables S1.3 and S1.4 in Text S1.

The vector population dynamics sub-model cell can be

described as a variant of the classic logistic population dynamics

model [36], using two ordinary differential equations (ODE) as

follows.

dpa

dt
~mpi{dapa

dpi

dt
~b(1{

pi

pimax

)pa{dipi{mpi

The top equation captures the dynamics of the adult midge

population pa in terms of the maturation rate m (of immatures pi

into adults) minus those adults which die da pa. The lower equation

models the dynamics of the immature midge stages in terms of the

birth rate b (following oviposition by adult females) which reduces

to zero when the habitat capacity of that cell reaches a maximum

pimax. The size of the immature population is depleted by the

immature death rate di pi and by the maturation of immatures into

adults m pi. Note that the parameters b, di, da, and m are functions

of temperature, as described previously.

The implemented model differs from the ODE system described

above in three ways.

1. The model is a discrete-time difference equation with one-day

time steps. In other words, for each cell, the temperature-

depended rate parameters are calculated using the temperature

for that day; the numbers of ovipositions, maturations, and

deaths are calculated using the rate parameters and current

populations, assuming the rate maintains a fixed value during

the day; and the immature and adult population numbers are

then updated accordingly. This process is fully deterministic.

2. When mature and immature populations (a) fall below levels

designated minima ei and ea, respectively and (b) are

decreasing, it is assumed that they become zero. Without this

feature, vector populations would never become extinct

regardless of how close to zero they become, which is

unrealistic. Since we did not attempted to estimate absolute

midge populations, values of 0.001 and 0.0005 were chosen as

small but arbitrary values for ei and ea respectively. A sensitivity

analysis showed that, ei and ea could vary over two orders of

magnitude without changing the outcome of the population

sub-model calibration process (see Section 2.4 below). The

stipulation that small populations only become extinct if they

are decreasing has the consequence that when very small

midge populations (less than ea) are dispersed into an empty

cell, they do not automatically become extinct. Rather, if the

temperature in the destination cell is conducive to population

growth, a population will become established; otherwise the

dispersed population will become extinct.

3. The immature Culicoides population density limit factor is not

(12pi/pimax) but max (0,12pi/pimax), i.e. when pi.pimax the

oviposition rate is zero and does not become negative.

Significant temperatures. As a result of temperature

dependencies, the behaviour of the population dynamics sub-

model has two important temperature regimes.

At temperatures above 17uC, adult activity is high, giving a high

oviposition rate. Although adult mortality increases with temper-

ature, the oviposition rate also increases meaning that fecundity

does not decrease with increasing temperature. In addition, the

immature maturation period is short and most immature midges

successfully emerge and do not die in the immature state [12]. In

this temperature regime, the population grows until the oviposition

rate is limited by the immature population density pi/pimax. This is

the active state referred to in Figure 2.

At temperatures below 17uC adult activity is low, giving a low

oviposition rate. Furthermore the immature maturation period is

long, becoming comparable to the immature lifespan, and

immature mortality becomes significant. With fewer midges

emerging and a slow rate of oviposition the immature and adult

populations decline and eventually become extinct. Note that due

to the relatively long immature lifespan, the immature population

may take several months to become extinct after the initial adult

population collapses. The period between the adult and immature

populations becoming zero is the inactive population state referred

to in Figure 2.

In addition to these processes, insect dispersal also alters cell

population states, with adults being moved out of some cells and

into others; see Section 2.3 below.

Climate scenarios. The vector population sub-model is

capable of representing Culicoides population dynamics having

Figure 3. Vector population dynamics sub-model compart-
ments. State transitions of individuals are indicated by solid lines (with
the associated rate parameter symbol given in italic type); the influence
of adult population on oviposition rate is indicated by the dashed line.
doi:10.1371/journal.pone.0104646.g003
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three distinct climatically driven patterns, each of which has

different consequences for BTV incursion and transmission.

Simulations of these climatic scenarios for C. brevitarsis are

presented in Figure 4, following seeding of midges from day zero.

1. Regions in which the climate allows C. brevitarsis populations

to exist actively throughout the year. In these areas the midge

population remains in the high-temperature regime (above

17uC), although the population may seasonally fluctuate as the

activity and breeding rate varies with mean daily temperature

[18,41,42]. This population dynamics scenario is illustrated in

Figures 4A and 4B, which show simulation output of

population time series for areas where the mean temperature

varies seasonally from 25–27uC and 16–26uC respectively,

following initial ‘‘seeding’’ of midges from time zero.

2. Regions in which the midge population undergoes large

fluctuations but does not become extinct. In these areas the

population is in the high-temperature regime in spring,

summer and autumn but falls into the low-temperature regime

for a period during winter. There may be times of the year in

which adult C. brevitarsis population becomes very low (and

may also be incapable of transmitting BTV) but the C.
brevitarsis population recovers each year without external

introduction when the temperature rises and surviving

immature stages emerge and re-start the breeding cycle [12].

This scenario is illustrated in Figure 4C, which shows

simulation output for an area where the mean temperature

seasonally varies from 13–21uC.

3. Regions in which C. brevitarsis can only survive seasonally. In

these areas incursions may result in a population becoming

established due to higher summer temperatures, but in winter

the population reverts to the low-temperature regime for such a

duration that both the adult and immature populations become

extinct [11]. This is illustrated in Figure 4D, which has

conditions two degrees cooler than Figure 4C. Note that the

fact that the number of C. brevitarsis found by trapping

programs falls to zero does not show population extinction by

itself. The inference that the population does become locally

extinct is made from fact that when the temperature rises the

following spring, trapped midge numbers do not rise with the

rising temperatures as they do in warmer northern areas where

they do clearly overwinter. Instead, midges are not detected

until a time delay has passed, with the delay being

approximately proportional to the distance from C. brevitarsis
endemic areas [43].

The model of Culicoides population dynamics described here is

based on C. brevitarsis but model parameterisation allows for the

population dynamics of other Culicoides midge species to be

represented.

2.4 Culicoides Midge Movement
Two types of insect movement can occur, wind-blown dispersal

and diffusive spread via active flight. Each cell centroid location

(latitude/longitude co-ordinates and altitude) and cell size can be

adjusted to suit the scale of the simulation, as a trade-off between

spatial resolution and computational efficiency. The relative

location of cell centroids determines the distance and direction

between neighbouring cells, with between-cell dispersal of midges

depending upon the distance between cells and prevailing wind

direction and speed.

Diffusive spread. Culicoides midges are significantly smaller

than most mosquito species and do not exhibit self-propelled long

range movements. In the absence of wind or other directional

stimuli, they can be assumed to move according to a random walk

process with typical movement ranges up to 100 m per day. Such

behaviour has been observed by trap-mark-release-trap field

experiments which showed that typical daily (or nightly) flight

ranges of midges are mostly on the order of a few hundred meters

[44,45]. The collective movement behaviour of a large number of

insects executing a random walk can be modelled as a diffusion

process [46,47]. When implemented in our cell-based spatially

discrete simulator, this process moves a small proportion of midges

to neighbouring cells during each simulation cycle. The same trap-

mark-release-trap experiment cited above showed that at least a

small percentage of midges travelled at least 4 km in 24 hours, so

it is expected that a small percentage of midges will move to a

neighbouring 5 km cell in each 24 hour simulation cycle, and our

representation of self-propelled midge movement as a diffusion

process captures this phenomena.

In a cellular implementation of a diffusion model, the quantity

of particles (in this case midges) moving between cells depends

upon the population density of the cells, the cell size, and a

diffusion coefficient which characterises the movement of the

diffusing species. Two studies report diffusion coefficients for

Culicoides species: 60.1 m2/s for C. impunctatus [47,48] and

12.96 m2/s for C. variipennis [45,49]; there does not appear to be

any similar quantified dispersal data for C. brevitarsis. The C.
variipennis value was adopted, since the methodology by which it

was derived is described in much greater detail compared to the

impunctatus value. A sensitivity analysis was performed which

examined alternative diffusion coefficients ranging from 6.5 m2/s

to 120 m2/s (see Text S1). Results of idealised proof-of-concept

simulations demonstrating the effect of the diffusive midge

transport model are shown in Text S1, Figure S1.1.

As indicated by experimental data on C. brevitarsis behaviour,

diffusive dispersal was assumed to occur only on days when the

mean temperature was 18uC or greater. Further details of the

implementation of the diffusive movement model can be found in

Text S1.

Wind-borne dispersal. For the purposes of wind dispersal,

each 1-day simulation cycle was also broken in to 3-hour wind sub-

cycles. This fine grain time period is required as the flying

behaviour of most midge species differs between dawn and dusk,

and other times of the day. Culicoides are active (that is fly, feed,

mate and egg-lay) when winds are no stronger than 8 km/h. If

winds are stronger they generally stay on the ground attached to

plants [20]. C. brevitarsis are known to be most active immediately

before and after dusk and active to a lesser extend just before

dawn. Once flying they may be lofted above their usual 3–4 meter

flying height by thermals or by topography-induced wind

turbulence, allowing them to reach higher altitudes with possibly

stronger winds [13,15].

Wind-driven midge transport was modelled representing two

midge sub-populations in each cell, a ‘‘grounded’’ and a ‘‘flying’’

population. It was assumed that three processes occurred in each

landscape cell during each 3-hour period:

1. Lofting. Based on observations of C. brevitarsis flight

behaviour, it was assumed that grounded adult (female) midges

take to the air on days when the mean temperature was 18uC
or greater, during periods approximating midge activity

around dawn and dusk (6pm to midnight, and 3am to 9am),

but only when the wind speed was less than, or equal to, 8 km/

h [20]. The rate that midges became airborne was such that on

average half of the midges in a cell would become airborne in

24 hours of continuous favourable flight conditions (we assume

that lofting is a Poisson process [50], which translates to 6% of
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midges becoming airborne in each favourable 3-hour period).

There is unfortunately no existing data to inform this model

parameter. A sensitivity analysis was conducted to assess the

sensitivity of the overall spread dynamics to this parameter

(details can be found in Text S1, Table S1.6).

2. Wind transport. Midges currently airborne were transported

into a number of cells in a ‘‘footprint’’ downwind of the source

cell. It was assumed that midges would be carried at the speed

of the wind. The AWS wind data source used recorded winds

at a standard height 10 m above ground. We considered that

midges may be transported by winds which may be faster or

slower than 10 m winds, since wind speeds generally increase

with altitude due to the surface wind gradient. We assumed

that the maximum midge transport speed was some multipli-

cative factor of the recorded 10 m wind speed (as midges may

be carried at higher altitudes), and calibrated this multiplier to

achieve the best fit to observed C. brevitarsis arrival times at

trapping sites in NSW in 1991/1992 [11]. This calibration

process is described below in Section 2.4 (in the subsection

entitled ‘‘Wind transport sub-model calibration’’). It was found

that multiplying the 10 m wind speed by a factor of 4 provided

the best match to the dispersal data (further detail can be found

in Text S1, Table S1.5). The footprint used was a wedge shape;

specifically, a circular sector with radius given by the spread

speed multiplied by the 3-hour wind dispersal cycle duration

and subtending an angle of 60 degrees, representing fluctua-

tions around the average wind direction reported in the AWS

weather data. Wind transported midges were distributed evenly

into the airborne population of all cells in the dispersal

footprint including the source cell. It should be noted that using

this mechanism, the use of large cell spacings will artificially

truncate wind dispersal at low wind speeds, when the

maximum dispersal range is less than the cell spacing. Our

choice of grid cell spacing of 5 km with a 3-hour wind dispersal

cycle period is sufficiently small that this problem is avoided.

3. Landing. Currently airborne midges were assumed to land at

the same rate at which they became airborne. Like the lofting

rate, there is no data available to inform this parameter value,

however sensitivity analyses showed that overall spread

dynamics were insensitive to this parameter (see Text S1,

Table S1.7 for further details).

Note that this dispersal mechanism allows wind-driven trans-

portation at speeds higher than the ‘‘take-off’’ threshold, since it

allows midges to become airborne and stay airborne even if the

wind speed subsequently increases beyond the 8 km/h threshold.

The model of midge dispersal used here is based on field studies of

C. brevitarsis flying behaviour [20] and long-distance dispersal

Figure 4. Effect of temperature on simulated midge population dynamics. Daily mean temperatures are shown in red with the scale on the
right axis. Population densities are shown in green (immature population) and blue (adult population), with the scale on the left axis. Population
density is given in units where the maximum sustainable immature population density has a value of 100. Four idealised climate temperature profiles
are shown. A: 25–27uC, B: 16–26uC, C: 15–25uC, D: 13–23uC.
doi:10.1371/journal.pone.0104646.g004
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[11,43], however the model is parameterised so that flying

behaviour of other midge species can be readily represented.

Results of idealised proof-of-concept simulations demonstrating

the effect of the wind-borne midge transport model are shown in

Text S1, Figure S1.1.

2.5 Culicoides Spread Simulation Experiments
Population initialisation. The northern coastal area of the

region being considered in this study is pictured in the north-east

corner of the map shown in Figure 5 and contains an endemic

population of C. brevitarsis [11]. A viable population is known to

persist throughout the mild winter period and subsequently

increases as the weather warms during spring and summer [18].

This area is the source of midges which then spread southwards as

the season progresses, as reported in the following [11,16–19]. The

area containing endemic midge populations was initialised by the

simulation model using the population dynamics sub-model as

follows.

All cells in the region were seeded with adult and immature

stages equally and the population dynamics process was run

without any midge dispersal between cells. This simulation used 1-

year temperature series for each cell (provided by the Australian

Bureau of Meteorology), starting on 1st January 1991, which is

summer in the Southern Hemisphere; 1991 was selected as this

was the year preceding the year when most C. brevitarsis trapping

occurred [11]. Consecutive years were used so that the temper-

ature data series ran continuously from the year used for

population initialization (1991) through the year used as the

primary comparison between simulated and observed midge

spread (1992/3). This initialization procedure allowed for

temperature differences between northern and southern areas of

the modelled region to impact on population growth and,

importantly, subsequent extinction. The low temperature activity

parameter (LTAP) in the population dynamics sub-model was

adjusted between successive applications of the initialization

procedure until immature stage midges became locally extinct

(in winter) in the same areas as reported in the literature

[11,16,18,19] as being too cold to support overwintering.

Specifically, the LTAP was adjusted in 1uC increments until a

dividing line between the northerly overwintering population and

southerly population (which became extinct) occurred south of the

Hastings valley (31uS) but north of the Manning valley (31.9uS),

see Figure 5. It should be noted that the LTAP value derived by

the calibration process also depended on the value selected for the

parameters ei and ea (described previously in Section 2.2).

However, while the overwintering behavior depended strongly

on the LTAP with small (1uC) changes causing large differences in

the overwintering area, it depended only weakly on ei and ea:

overwintering areas were similar for ei and ea values spanning two

orders of magnitude.

The adult and immature population densities for each cell were

recorded at the 1st October 1991 simulation cycle, and this

population density map formed the initial conditions for the main

simulations described in the results section. Video S1 shows an

animated map of the population density during the calibration

simulation. In performing this calibration procedure, it was

noticed that the geographical occurrence of overwintering and

occurrence is very finely balanced. Small changes in LTAP (or in

the actual temperature times series) led to overwintering in the

lower Hunter valley (see Figure 5), which is consistent with the fact

that overwintering is intermittently observed in some years but not

others [17].

Wind transport sub-model calibration. A series of simu-

lations were conducted to determine the maximum wind transport

speed parameter, which accounts for midges possibly being

transported by winds at high altitudes and higher speeds than

the AWS recorded wind speeds (see Section 2.3 ‘‘Wind-borne

dispersal’’). The population was initialized for 1st October 1991 as

described above, and multiple simulations were run varying the

wind speed transport multiplier over the range [0.0,5.0] in

increments of 1.0. A value of 4.0 maximized the agreement

between simulated and observed spread (as described below), and

this value was used in subsequent spread experiments (further

information can be found in Text S1, Table S1.5).

Simulation experiments. Experiments were conducted us-

ing the model in the coastal area of NSW bounded by: 31.5

degrees south to 35 degrees south and 149 degrees east to 153.75

degrees east. The area was divided into a grid with 0.05 degree

spacing (approximately 5 km), giving 12,350 individual cells. Cells

with centroids in the ocean, urban areas of Sydney, Wollongong

and Newcastle and national parks were marked as unsuitable

habitats due to the need for cattle dung for ovipostioning (egg-

laying). All other cells were deemed uniformly suitable C.
brevitarsis habitats, assuming adequate cattle numbers to sustain

the breeding cycle. More detailed cattle density heterogeneity data

will be sourced when these modelling techniques are applied to

BTV transmission in this region. Unless otherwise stated,

simulations were run for 12 months from the beginning of

October 1991, when midge populations begin to become active

following winter.

Quantifying agreement between simulated and observed

midge spread. We used a C. brevitarsis trapping data set that

recorded the month during which C. brevitarsis was first detected

at various sites in NSW in the summers of 1990/91, 1991/92 and

1992/93 [11]. In the publication describing the data set monthly

time periods were reported, using data aggregated from weekly

trapping time series data, which exhibited considerable noise at

the weekly level. The output of each simulation run included the

adult population density for each cell on each simulation day. For

each of the trapping sites in the data set we determined the cell

that contained the site, and determined the date on which the

population rose above a trapping detection threshold parameter,

which represented the minimum population density at which C.

brevitarsis would be detected. Since the relationship between

numbers of midges caught in traps and the true midge population

is unknown, we selected a small but arbitrary value of 0.05 (i.e. 1/

50,000 of the immature population carrying capacity) for the

trapping detection threshold. Because simulated midge arrival

times depend both on the parameters of the transport sub-model

and the trapping detection threshold, it is conceivable that the

calibration of the transport sub-model is thus merely reflecting the

(arbitrary) choice of the trapping threshold. A sensitivity analysis

showed this is not the case: the best-fitting wind speed multiplier

parameter was found to have the same value (4.0) for trapping

detection thresholds varying over at least two orders of magnitude

(in the range [0.005,0.5]). Results of this sensitivity analysis can be

found in Text S1. The simulated and observed months of first

arrival were treated as discrete variables, and Cohen’s kappa

statistic [51]. Cohen’s kappa ranges from 1.0 indicating perfect

agreement to 0.0 indicating a level of agreement expected by

chance alone; with negative values indicating systematic disagree-

ment. For each data point (which in our case is an arrival time at a

trapping site), kappa penalises disagreements between observed

and simulated category values (which in our case are arrival

months). The calculation of kappa allows these penalties to be

weighted according the magnitude of the disagreement - we

weighted disagreements by the square of the number of months

difference between observed and simulated arrival. For example, a
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Figure 5. C. brevitarsis spread arrival times as determined by trapping experiments. Lines denote arrival times of C. brevitarsis derived from
trapping data in New South Wales in 1991/2, classified by monthly zones. This figure is based on Figure 2 from [11]. Circles denote trapping site
locations; filled circles indicate sites at which C. brevitarsis were detected, open circles where not detection occurred.
doi:10.1371/journal.pone.0104646.g005
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site at which simulated and observed arrival different by 2 months

(e.g. December and February) was penalised four times more than

a site with a 1-month disagreement (e.g. December and January).

The significance value p is the probability of observing the level of

agreement (kappa value) assuming that the true agreement is zero.

Results

3.1 Overview
Results presented in Section 3.2 illustrate the population

dynamics generated by the model using seasonally varying

temperatures. These highlight the effect which temperature has

on C. brevitarsis population expansion and decline, as the

temperature increases and then falls from spring through summer

and into winter.

In Section 3.3, the effect of the two sub-models, viz. midge

population dynamics and midge dispersal, is shown to capture

seasonal midge incursions moving southwards along the NSW

coast. If diffusive midge dispersal occurs without the addition of

wind-driven dispersal, the simulated incursions fail to reproduce

the rate of southerly spread observed by the field trapping

programme [11,16,18,19]. With wind-dispersal added, monthly

patterns for midge arrival times at the different trapping locations

in NSW are (approximately) reproduced by the model. These

simulated data confirm that both sub-models operating together

replicate observed C. brevitarsis characteristics, that is, the

dispersal of midges into ‘‘virgin territory’’, the subsequent

temperature-dependent population establishment and growth in

these areas, followed by decline and then extinction.

3.2 Population Dynamics
Using actual daily temperature data, the population dynamics

sub-model was shown to be consistent with the C. brevitarsis
population dynamics data in the given locations and reported in

[11,16,18,19], as follows.

Endemic populations where adults are present year-round can

occur near the northern NSW state border, for example Byron

Bay (latitude 28.64 south). Figure 6A shows the daily mean

temperature and simulated population curves for the Byron Bay

location over one year starting in January 1990. The data shown

in Figures 6A, 6B and 6C were obtained by locating the

simulation cell containing the site, and extracting the temperature

and adult population density daily time series for that specific cell

from the simulation used to establish the initial population (see

Section 2.4 ‘‘Population initialisation’’). The simulated population

curve shows that temperature and breeding activity are at a

maximum in January and February, explicitly reflecting known

temperature dependent population dynamics. The midge popu-

lation grows during this period and peaks at the end of February.

The population then slowly declines with declining temperatures,

as the rate of newly emerging midges does not keep pace with the

midge mortality rate. Temperature and breeding activity reaches a

minimum in August. By the end of October the population begins

to increase as the larvae from the increased breeding activity begin

to emerge. The relationship between temperature (red) and the

adult population (blue) can be seen clearly in Figure 6A.

Further south are areas in which the adult population

disappears (i.e. falls below levels where it is detectable by a

trapping program) during winter but where larvae survive and

quickly re-establish adult populations once the temperature

increases. Figure 6B shows temperature and population curves

for Kempsey (latitude 31.08 south) which is approximately 350 km

south of Byron Bay. In this location the simulated population

curve during summer and autumn is similar to that described in

Figure 6A except that the population fluctuation is larger due to

the greater seasonal temperature variation. At the coldest part of

winter the adult population falls to zero: all adults die due to the

low temperature and additionally no larvae emerge. Once the

temperature increases however, surviving larvae emerge and

establish a breeding cycle once more.

Further southwards ‘‘down’’ the NSW coast are areas in which

imported populations can survive during summer and autumn but

where longer winter cold periods render both the adult and

immature populations extinct. Figure 6C shows temperature and

population curves at Nowra (latitude 34.94 south, on the southern

coast in Figure 5) which is approximately 570 km south of

Kempsey. In this simulation a population is assumed to be present

at the beginning of the year, due to movement from further north.

The population grows in summer, declines in autumn, and the

adult population becomes zero during winter. Somewhat later, the

immature population (not shown) also becomes zero.

We note that midge populations reported in the literature from

trapping programmes [18,20] are considerably more ‘noisy’ than

the simulated population curves appearing above. We believe that

this is primarily due to the relative spatial resolution of the

simulation model compared to the area sampled by the traps.

While the simulation model represents average midge density over

a 5 km cell, each trap samples an area approximately 100 m wide,

and so highly localised effects come into play, such as daily and

weekly movement of cattle into and out of the area near the trap

site.

3.3 Culicoides Spread and Population Dynamics
Midge trapping studies have documented the seasonal spread of

C. brevitarsis in NSW e.g. [11,16,18,19]. Typically, midge

populations are detected in the Manning Valley coastal area in

November (see Zone 1, Figure 5), having spread from the endemic

areas further to the north. In the following months C. brevitarsis
midges are successively detected at increasing distances south-

wards from the Manning Valley. Although prevailing winds are

not predominantly from the north in this area, simulations show

that periods of north or north-easterly winds are frequent enough

to generate ‘‘spread events’’ that distribute C. brevitarsis into

previously unoccupied territory, from which populations build and

spread further. Winds in other directions also transport midges to

the north and east; however these transport events do not impact

the overall spread of C. brevitarsis, as midges are spread back into

areas they already occupy, or out to sea where there is no

supporting habitat. The distance of southern spread varies from

year to year due to weather variability, which includes the number

and timing of significant southerly wind spread events, but the

overall pattern remains similar; Figure 5 (based on Figure 2 from

[11]) shows this spread during 1991/92.

The combined Culicoides population dynamics and dispersal

sub-models described in the Methods section was used in a

simulation of C. brevitarsis dispersal and shown to replicate this

southerly spread. The model used actual, spatially-explicit weather

data for the 12 months from 1st October 1991. The simulated

arrival times when the first C. brevitarsis appear are pictured in

Figure 7A and by the monthly arrival ‘‘zones’’ overlaid onto the

map in Figure 7B. Figure 7B allows comparison with Figure 5,

which maps similar monthly arrival time isochrones but which are

based on an extensive trapping program [5] (the zone boundaries

in the right frame of Figure 7B were drawn by hand to visually

separate the sites that fall into each zone). Table 1 presents

monthly simulated arrival times together with the corresponding

observed trapping months, allowing simulated and actual arrival

times to be compared for all locations where trapping occurred,
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along with a quantitative measure of agreement (Cohen’s kappa –

see Section 2.4 ‘‘Quantifying agreement between simulated and

observed midge spread’’). Table 1 also includes observed versus

simulated midge arrival time comparisons for the seasons

immediately prior to 1991/92, namely 1990/91 and 1992/93.

Data from these additional years was not used in the calibration of

the model, and thus serves as a proof-of-concept validation of the

model.

A short animation of the simulated population dynamics and

midge spread is provided in Video S2. The animation shows

several clear wind transport events where midges are dispersed

from locations with established populations to new areas, which

then experience their own population growth and onward

dispersal into previously midge-free areas. The animation also

shows the seasonal cycle of the incursive midge population, with a

growth phase in summer and autumn, followed by disappearance

of midges during the winter months, first from higher altitude

inland areas which experience lower temperatures first, and then

from the coastal area, starting from the south and proceeding

northwards. New populations grow again in spring from

overwintering populations in northerly, but not southerly areas.

3.4 Sensitivity analyses
In addition to the main experiments comparing observed midge

spread to that generated by the simulation model, we also

performed additional experiments to support the claim that a

model combining temperature-dependent population dynamics

and wind-borne dispersal is necessary to represent the seasonal

incursive C. brevitarsis population in NSW. Quantitative results of

Figure 6. Temperature and simulated C. brevitarsis populations. Daily mean temperatures are shown in red with scale on right axis. Adult
midge population density shown in blue with scale on left axis. Population density is given in units where the maximum sustainable immature
population density has a value of 100. Three time series were extracted from the population initialisation simulation (see Section 2.4 subsection
‘‘Population initialisation’’) for locations A: Byron Bay (latitude 28.64S), B: Kempsey (latitude 31.08S), and C: Nowra (latitude 34.94S).
doi:10.1371/journal.pone.0104646.g006

Figure 7. Simulated arrival times following midge dispersal and population establishment. A: Midge arrival times shown by colour for
the months following 1st October. White (ocean) and grey indicates areas in which no midge population became established. B: Contours showing
monthly arrival time Zones: Zone 1 November, Zone 2 December, Zone 3 January and Zone 4 February.
doi:10.1371/journal.pone.0104646.g007
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these experiments can be found in Text S1, Tables S1.8, S1.9 and

S1.10.

In the C. brevitarsis literature it is reported that the low winter

temperatures in southern NSW prevent overwintering, and that

when midges are detected in those locations this is a result of

midges being transported from the north. As an initial test of our

model, we considered an alternative hypothesis that midges

overwinter in all locations where they are detected, and the

apparent progression of midges from north to south is actually due

to midges being detected at progressively later times due to slower

population growth in southerly regions, reflecting temperature

rises occurring later in the spring in the southern regions. This

hypothesis was examined by running simulations without the

midge transport sub-model, using a range of values for the LTAP

value, which determines the locations in which overwintering will

occur. We then compared the first simulated detection times of

midge populations which grow after overwintering, with the first

detection times from the trapping data. We found that these

simulation scenarios (with overwintering in all locations but

without midge transport) could not reproduce the observed midge

detection patterns. See Text S1, Table S1.8.

We next conducted simulations to determine if midge spread

could be modelled as a purely diffusive local spread phenomena,

without a wind-driven component. We found that in order to

approximate the observed midge spread, the diffusion coefficient

(representing the short-range, self-propelled flight behavior of

midges) would have to be larger than any reported value for

Culicoides midges, such as presented in [45,47]. See Text S1,

Table S1.9.

Finally, we examined how the temperature-dependent nature of

the population dynamics affected the timing of midge spread. We

found that a model using constant temperature could replicate the

Table 1. Simulated and Observed Arrival Times.

1990/91 1991/92 1992/93

Number of sites (n) 25 24 13

agreement (kappa) 0.468 0.527 0.571

Significance (p)* 0.00205 0.00485 0.00661

Site observed/simulated arrival month

Buladelah 1/3 1/1 2/4

Bunyah 1/3 1/1 2/3

Bylong 5/6 5/3 -

Camden 4/6 4/4 -

Dartbrook 4/4 4/1 -

Glenwilliam 2/4 1/1 3/3

Glouster 1/3 1/1 3/3

Goulburn 5/6 5/6 -

Martindale 3/4 4/2 -

Merriwa 5/3 5/2 -

Morisset 2/6 2/3 3/4

Mudgee 6/6 - -

Murrurundi 4/4 4/2 -

Nowra 4/6 5/6 -

Ourimbah 3/6 3/3 4/4

Richmond 4/6 4/6 5/6

Scone 4/4 2/1 -

Singleton 2/4 2/1 3/3

Tamworth-F - 6/1 -

Tamworth-T - - -

Taree 1/2 1/1 1/3

Tea Gardens 1/4 1/1 2/4

Tocal 2/4 2/1 3/3

Upper Landsdown 1/2 1/1 1/2

Wallahbadah 4/3 - -

Warkworth 4/4 3/1 -

Wauchope 1/1 1/1 1/2

Numbers given for observed and simulated C. brevitarsis arrival times denote the month after October i.e. Zone 1 November, Zone 2 December, Zone 3 January, Zone 4
February, Zone 6 March. A dash (-) indicates that C. brevitarsis were not observed (in reality or in simulations) in that year at that location; these sites were excluded from
the analysis for that year.
* Significance p-value is the probability that the agreement kappa value would be found given that simulation and observation were uncorrelated i.e. if simulation
results were random.
doi:10.1371/journal.pone.0104646.t001
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observed midge spread, however this model was inferior in several

ways. Firstly, it is artificially sensitive to the starting date of the

simulation, since population growth and spread occur from the

beginning of the simulation; by contrast, the temperature

dependent model is insensitive to the simulation start date, since

spread begins only when temperatures allow population build-up

in newly colonised areas. Secondly, while initial arrival times can

be approximated with a constant temperature model, the final

state of the midge population at the end of the simulation is very

inaccurate, as with constant temperature there is no winter die-off

of midges and midge activity occurs all through the year. This

precludes the use of a constant temperature for multi-year

simulations. See Text S1, Table S1.10.

Discussion

Models of insect vector population dynamics and movement are

necessary when developing biologically plausible models of insect

disseminated disease spread. The C. brevitarsis model presented

here will be used in the future development of a BTV spread

model and used to determine the effectiveness of interventions (e.g.

vaccination, culling and/or movement bans) in achieving disease

free status following an incursion into a previously disease free area

[24]. Furthermore, the effects of longer term temperature changes,

such as those caused by global warming are captured through the

temperature dependencies included in the model. Changes in

temperature ranges will potentially change the population

dynamics and over-wintering of C. brevitarsis in this region. The

research challenge is to develop a modelling framework which

supports the construction of realistic models which capture the

fundamental features of the underlying physical system and, if

possible, validate it using field-collected data, as is done in this

study for the years 1990/91 and 1992/3 in Table 1.

The model described in this study was sufficiently realistic to

permit us to address qualitative questions as to the nature of midge

population growth and spread: that establishment of midge

populations in southern areas in summer is inconsistent with an

overwintering thesis but consistent with midges being transported

from endemic areas in the north; and that this involves wind-

blown midge transport and not solely self-propelled midge

movement. The data in Table 1 indicate that simulated arrival

times follow the same pattern appearing in the trapping data, with

spread southward and westward from the endemic area as the

months progress. However, midge arrival time predictions based

on inferred initial populations and observed weather are not

especially accurate, having Cohen’s kappa 0.527 (p = 0.00485).

The major discrepancy between the simulated and observed

spread is that in the simulation spread occurs rapidly to the west,

over the Great Dividing Range to the NSW Tablelands, from

where it spreads south, arriving all along the length of the Hunter

Valley at the same time. The trapping data indicates that actual

spread does not rapidly cross the Great Dividing Range, but

occurs first southerly to the lower Hunter Valley area, and the

progressively west up the valley. Limitations of the current model

include the omission of rainfall, humidity and variable cattle

density, all of which are lower in NSW inland areas, all which may

contribute to this inaccuracy. These data-related issues could be

addressed in future model developments.

The modelling mechanisms described above have been shown

to model the key phenomena which underlie the spread of

pathogen-carrying insect vectors and thus spread of the pathogens

themselves. With appropriate adaptations these methods have

application beyond the Culicoides vector and Bluetongue virus,

with possible application to human viruses spread by mosquitoes,

such as dengue, chikungunya, and Japanese encephalitis [52,53].

They also have direct application to incursions of mosquito species

into new territory, such as the recent spread of the Asian tiger

mosquito Aedes albopictus, a competent vector for dengue and

chikungunya, in southern Europe [54] and Australasia [55].

4.1 Related Research
Models of Bluetongue virus generally exclude inherently spatial

landscape and habitat features which impact on Culicoides
population dynamics and movement, such as presented here.

For example, the BTV transmission models presented in

[26,27,56] rely on inter-farm BTV transmission being modelled

by a distance kernel which implicitly includes vector dispersal and

animal movement. The transmission model for between-farm

spread required data from the 2006 northern European outbreak

to estimate parameters; no location-explicit Culicoides vector data

was used and BTV outbreaks in different environments, such as

different farm structures, insect vector habitats and climate

regimes may not be directly modelled using this approach. BTV

spread models with implicit vector populations do not allow for

explicit modelling of the spatial spread of BTV via wind-

moderated midge dispersal, nor BTV spread in areas where the

presence of a Culicoides population varies seasonally or from year

to year.

Models which explicitly represent the effect of wind speed and

direction on BTV spread via midge dispersal have been developed,

in the study reported in [28] for example, where the spread of

BTV cases is taken to be a surrogate for insect movement. In that

model a more sophisticated wind model which included the effects

of topography was utilized, compared to that adopted in this study.

BTV outbreak data from southern France was used for model

parameterization and no model of insect population dynamics was

required, as BTV spread into areas with already-present

competent Culicoides species, in contrast to the vector incursion

scenario presented here.

Incursion of arboviruses such as Bluetongue (BTV) and

Akabane [11] (also spread by C. brevitarsis) into areas without

an extant competent vector population do not behave in the same

way as incursions into areas with endemic competent vector

populations. In NSW, Australia (the same area as used in this

modelling study) Murray showed that the arrival of the Akabane

virus was delayed 4–6 months relative to arrival of the

C.brevitarsis vector [11]. By contrast, in the northern European

BTV outbreak in 2006 and subsequent years, BTV spread much

faster than that observed by Akabane virus spread in NSW. This

was a consequence of infected Culicoides species moving into areas

already containing similar midge vector populations, hence rapidly

producing localized outbreaks without the need for populations to

become established and the consequent time delay required to

raise the vector population to support virus transmission [24,57].

The NSW scenario presented here required establishment of

significant vector populations, causing a delay before virus

transmission to/from cattle may occur. By contrast, in the

northern European setting a resident, competent population of

(paleo-arctic) Culicoides species existed and these rapidly became

infected once infected midges arrived and infected host cattle (and

sheep to a lesser extent) [58]. In the European context, higher host

densities and smaller distances between farms may also contribute

to the rapidity of BTV spread. Detailed analysis of the 2006

northern European BTV outbreak [59] suggests that observed

long-distance BTV spread (over land) may be due to sequences of

fairly short (,5 km) ‘stepping stone’ infections rather than long

range jumps; a feature which is readily modelled using the fine-

grained spatial methods detailed in this paper. The modelling
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mechanism presented reflects the physical system where popula-

tions of midges are dispersed relatively short distances, then

establish themselves and take time to increase the size of the local

populations in the new regions. Again, this differs from the

European setting reported in [59] where populations already exist

in the locations where BTV-infected Culicoides vectors move into,

as a travelling wave of BTV-infection in host animals. In the model

presented here we also describe a travelling wave, but in this

instance it is of the arrival of the insect vector itself. In order to

model Bluetongue incursions in locations where competent vectors

are not endemic but are only seasonally present, modelling the

invasion of the vector population, as presented here, is necessary to

modelling BTV spread itself.

4.2 Limitations and further research
While the temperature-dependent population dynamics sub-

model does reproduce the different C.brevitarsis climatic zones in

NSW and is consistent with experimental data on immature midge

survival, the role of the climate data was to calibrate rather than

validate the population dynamics sub-model. Quantitative valida-

tion of the population dynamics model would require year-round

trapping data from field experiments at multiple sites in each

climatic zone, data which to the best of our knowledge does not

exist. Similarly, our approach of using one year of midge arrival

time data for calibration and a further two years data for

validation of the midge dispersal sub-model has allowed an overall

qualitative validation, but does not constitute a comprehensive

quantitative validation.

The modelling methodology presented here adopted a simpli-

fied representation of C.brevitarsis habitat. Cattle free areas were

denoted as being unable to support midge populations and thus

any midge incursions into these areas failed to establish a resident

population. This vector habitat representation was binary; each

cell was either suitable for midge establishment due to the presence

of cattle, or not. A more refined version would capture variation in

cattle density and map this at greater spatial detail.

For practical applications of this spatially-explicit modelling

methodology, more accurate wind models may be used. These

provide gridded meteorological data down to 1 to 4 km resolution;

examples include NAME (UK Met. Office [60]) and HYSPLIT_4

(Bureau of Meteorology, Australia). Both of these wind models

have been used to model actual and possible wind dispersal of

animal diseases; NAME used for BTV dispersal via Culicoides
movement [13] and for Foot and Mouth Disease virus particle

spread [61] and HYSPLIT_4 for potential BTV spread via

Culicoides movement [15] and potential Foot and Mouth Disease

virus plume spread [62].

Conclusions

This study has introduced a spatially-explicit, discrete-event

simulation modelling methodology to capture insect dispersal, via

wind and flight, coupled with the establishment and growth of the

population after arrival in areas with suitable habitat. The

feasibility of this modelling technique has been demonstrated

and shown to successfully capture the interrelated dynamics of

insect population dispersal and establishment. Specifically, the

methods developed have been demonstrated by their ability to

replicate published spatio-temporal incursion data of C.brevitarsis
obtained from extensive trapping programs. The modelling system

is heavily parameterised, making it applicable to a range of

pathogen carrying insect species by altering parameters appropri-

ately.

The model described in this paper is intended to form the basis

for an extended model that simulates the spread of Bluetongue

virus, which will require the addition of host-to-vector and vector-

to-host pathogen transmission sub-models. This extended model

may then be used to address the effectiveness of intervention

measures for mitigating BTV spread, such as spatially targeted

vaccination strategies or movement bans or the impact of climate

change on the risk and extent of disease outbreaks.
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ysis results.
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season.
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