
Properties as Processes : their Specification and
Verification

Joel Kelso and George Milne

School of Computer Science and Software Engineering
University of Western Australia
{joel,george}@csse.uwa.edu.au

Abstract. This paper presents a novel application of an untimed process
algebra formalism to a class of timing-critical verification problems usually
modelled with either timed automata or timed process algebra. We show that
a formalism based on interacting automata can model system components,
behavioural constraints and properties requiring proof without elaborating the
underlying process-algebraic formalism to include explicit timing constructs;
and that properties can be verified without introducing temporal logic, model-
checking, or refinement relation checking. We demonstrate this technique in
detail by application to the Fischer mutual-exclusion protocol, an archetypal
example of a system that depends of timing constraints to operate correctly.

1 Introduction

Many complex systems are most naturally modelled as collections of components that
operate and interact concurrently. Such modelling allows a problem to be decomposed
into parts having behaviour that is, in isolation, readily described. To operate cor-
rectly, some complex systems rely on timing relationships between certain critical
actions shared by two or more components. In order to verify the correctness of such
systems, the tools and methodologies used must be capable of expressing timing con-
straints and temporal properties in a manner clearly comprehensible to the user.

The contribution of this paper is twofold. Firstly, it demonstrates an intuitive
way of describing relative orderings among timing intervals as processes (i.e., as state
machines), which can be naturally composed with system model processes to supply
the timing-critical aspects of the model’s behaviour. This separation of timed and
untimed behaviour helps specification, as it allows greater freedom in partitioning the
work of constructing complex models.

Secondly, this paper describes how formal protocol verification may be achieved by
use of a process algebraic equivalence checker coupled with the concurrent composition
of (1) a system description, as a process, and (2) a process which describes the property
requiring proof, which is also presented as a state / action / new-state type process.
When both types of object are modelled as processes, there is no need for design
engineers to learn a separate property description language or model checking tool
in addition to a language with which to express system behaviour. We believe that
this simplification, and the ability to express properties requiring verification in a
state machine type manner, is of real value in encouraging engineers to adopt formal
description and verification methods.



This paper uses the well-known Fischer protocol to illustrate both this treatment
of timing representation, and the composition-based property verification technique.

A key feature of the methodology described in this paper is the central role of the
concurrent composition operator. Concurrent composition is the fundamental mecha-
nism for constructing system models in the process algebra paradigm; its use for this
purpose warrants no additional comment. In our methodology, concurrent composi-
tion plays two further significant roles, namely to enforce timing constraints, and as
the core of the composition-based verification technique.

1.1 Timing Constraints as Processes

Rather than encoding timing constraints as an integral part of a system model (which
is the usual case with timed automata [1] and timed process algebra [17] modelling),
timing constraints are encoded as separate processes that express relationships be-
tween time intervals.

This is accomplished by first determining which actions in the system model sig-
nify the boundaries of time critical time intervals, and then defining timing constraint
processes which express the allowable sequences of occurrences of these events. When
these processes are composed with the system model, they enforce the timing rela-
tionships that they encode.

In this way the modelling of system behaviour can be decoupled from the tim-
ing constraints. This simplifies model development and experimentation, since timed
aspects of a model can be altered without modification of the time-insensitive aspects.

1.2 Properties as Processes

The idea of expressing properties requiring proof as processes is a well-known pro-
cess algebraic technique, described for example in [5, 15, 19]. In the case where a
correctness specification is a complete description of a system, verification proceeds
by checking that the system implementation process is equivalent to the specification
process according to some semantic equivalence relation.

Frequently, however, total behavioural equivalence between two processes is not
the goal of the proof process. For certain systems, verifying correctness consists of
determining that certain properties do in fact hold for an implemented system. Such
properties do not constitute a complete specification but are rather a particular re-
lationship between a number of distinct actions. Verification of such properties then
requires the demonstration that the occurrence of the property actions in the con-
structed system model process have the same sequence of occurrence designated by
the property process.

One technique for accomplishing this is to abstract all non-property actions from
the model process, and then check that the model refines the property process ac-
cording to a semantic ordering relation (see [19] chapter 14 for example).

In this paper we describe an alternative proof mechanism that avoids the in-
troduction of the concept of process refinement orderings, and in which concurrent
composition plays a crucial role.

In section 2 we present the mechanism which underlies our property verification
technique. In section 3 we demonstrate the technique by application to the Fischer



protocol, showing in detail how timing constraints and correctness properties are
formulated as processes. In section 4 we discuss the significance of this work and
contrast it with related work.

2 Checking Properties via Composition

We show how the verification of a class of properties, safety properties, can be per-
formed in an process algebra (or interacting automata) based framework by making
use of the concurrent composition of processes and process equivalence testing – pro-
vided that the process composition operation has certain features.

Our description of this technique is framed in terms of the Structural Operational
Semantics approach to formalising process behaviour [18]. Under this approach, pro-
cesses are identified with labelled transition systems (LTS). A LTS is a rooted directed
graph where each edge is labelled with an action. Each vertex of the graph is a dis-
tinct state of the process, and each edge represents a transition between states, with
transition labels determining the interaction between the process and its environment
(or with other processes).

Labelled transition systems admit a variety of different equivalence relations and
orderings, such as trace equivalence, testing equivalence and bisimulation. The tech-
nique we present here can be used with any of these process equivalence relations,
yielding criteria for the fulfillment of safety properties which vary in sensitivity to
internal (unobserved) process nondeterminism. Trace equivalence is assumed here,
since it is both simple and sufficiently discriminating for the examples in this paper.

2.1 Safety Properties and Concurrent Composition

A safety property of a system is a property which states that “nothing bad” will ever
happen. When expressed as a process, a safety property process exhibits only allowable
behaviours – the set of behaviours that a system must not overstep if it is to fulfill
that property.

Note that property processes can usually be expressed in terms of only a subset
of the actions in the system model process. The actions which occur in a property
process can be thought of as the actions that the property “cares about” – those that
directly affect the truth or falsity of the property in a particular system. All the other
actions occurring in the system model processes, while they might be vital for the
functioning of the model, should be ignored by the property. This is significant since
properties can be much simpler than a full system specification.

The concurrent composition of processes is used to verify that a system correctly
satisfies a particular safety property using the following procedure:

1. The system model process is composed with the property process so that they
synchronise only for the events in the property process.

2. This composite process is compared to the system model process: if the two are
equivalent, then the system fulfills the safety property.

This procedure is summarised by an equation that must hold in order for system S
to fulfill property P :

S ∗ P ∼= S (1)



where S ∗ P denotes the concurrent composition of S and P .
To see how the concurrent composition of processes can be used to perform a

safety property check, consider an example property process P and two different
system component processes S and T , pictured in Figure 1. Process P represents the
property that all occurrences of actions a and b must begin with a and then strictly
alternate.

Fig. 1. Example property and system processes.

By having P operate in parallel with S and synchronising on actions a and b, P
can be considered to be “supervising” S, watching for occurrences of actions a and b.
Let us follow the possible activity of the combined process S ∗ P .

Both processes begin in state 1. In state S1, S can perform action a and transition
to state S2. Since P and S synchronise on action a, P participates in this action and
also transitions from state P1 to state P2.

In state S2, S can perform action c and transition to state S3. Since P is uninter-
ested in action c, S is free to perform this action without any change in P . In state
S3, S may again perform c and return to state S2. S may thus perform any number
of c actions while P remains in state P2.

In state S3, S may also perform a b action. In this case, P must be in state P2,
and is also ready to perform action b, returning both processes to state 1.

In this example, process S is never prevented from performing an action by P .
The behaviour of the composite process S ∗ P is thus equivalent to S, so S satisfies
property P .

Process T provides a contrasting example of a process that fails to satisfy property
P . By again following the concurrent behaviour of T and P we can see how this is
detected.

The initial behaviour of T and P is the same as S and P – both participate in
action a and transition to state 2. In state T2, T can only perform action a. Since T
and P synchronise on action a, P must also perform a. But in state P2, P is only ready
to perform action b. Neither process allows the other to continue, and so the composite
behaviour of T and P ends at this point. This behaviour (a single occurrence of a) is
clearly not equivalent to the behaviour of T , so T does not satisfy property P .

These examples are extremely simple, but the technique operates correctly for
arbitrarily complex processes, including those where both system and property are
nondeterministic. The soundness of this property checking technique is proven in [9].



In order for this proof technique to work, the concurrent composition operation
must have two important characteristics. Firstly, the operator must be able to enforce
synchronisation for actions in the property process, while allowing free asynchronous
activity for other actions. Secondly, the operator must allow multi-way synchronisa-
tion. It must allow two or more processes to participate in an interaction, so that
property processes can synchronise on the same actions present in the system pro-
cesses. This enables a property process to monitor system processes and restrict their
behaviour to activity that correctly satisfies the property. If the system processes do
contravene the specified property, then the equivalence check will detect the fact that
the composite system’s activity has been curtailed, signifying that the safety property
is not satisfied.

The concurrent composition operator of the CIRCAL formalism [14], used in this
paper, has these characteristics. The CCS [16] parallel composition operator cannot
be used in this manner since CCS synchronisation operates with complementary pairs
of events, which are eliminated in the resulting composite process. The CSP [8] gener-
alised parallel operator is suitable since the set of synchronisation events is an explicit
parameter to the operator, and the operator allows multi-way composition.

2.2 Modelling With CIRCAL

In this paper we adopt the CIRCAL process algebra [14, 15] for our definition of model
components, constraints and properties. Several different notations and toolsets have
been developed for defining complex systems as CIRCAL processes. XCircal [15], used
in this paper, is a C-like language in which the CIRCAL process algebra operators
have been embedded, while [5] defines an intuitive and precise diagrammatic notation
for CIRCAL processes. Also under development is a library of functional language
combinators (in Haskell) for defining and manipulating CIRCAL processes [10], and
a visual programming interface for building processes in diagrammatic form.

These representations build upon the same underlying CIRCAL process formalism,
and enable modellers to exploit the formalism’s important features. Three of the
formalism’s characteristics are particularly relevant to our proof technique. Firstly,
the CIRCAL composition operator fulfills the partial synchronisation requirement
necessary for the composition-based property verification technique.

Secondly, the CIRCAL composition operator is a multi-way operator in which an
action shared by two processes remains visible in the composite process, enabling
additional processes to participate in the event. This allows processes that implement
behavioural constraints, diagnostic “probes” (see for example [15]), and correctness
properties to be composed into a system model without having to modify the original
processes.

Thirdly, the fact that transitions are labelled with sets of events allows arbitrary
finite relations and functions to be constructed and incorporated into a model. These
can be used to connect and adapt process components, or as model components in
their own right.



3 Modelling and Verification Methodology

In this section we outline our modelling and verification methodology, then illustrate
the methodology by application to a timing-dependent concurrent mutual-exclusion
protocol. The methodology proceeds in three phases.

1. The first phase consists of identifying critical actions in the system being mod-
elled and constructing processes that capture the essential details of the system’s
behaviour. This involves constructing explicit transition systems for parts of the
system that can be modelled as simple finite state behaviours, and using concur-
rent composition and abstraction operations to construct larger, more complex
systems in a hierarchical fashion. This phase is illustrated in section 3.2. At this
stage the detailed time-critical aspects of the model may be ignored.

2. In the second phase, the model events that delimit critical timing intervals are
identified. Timing constraint processes that specify the necessary relationships
between these intervals are then constructed and composed together to obtain a
timed system. This phase is illustrated in this paper in section 3.3.

3. The third phase consists of the definition and verification of required system
properties, which is accomplished by the construction of property processes and
application of the constraint-based verification technique. This phase is illustrated
in section 3.4.

3.1 Modelling the Fischer Protocol

The Fischer Protocol [13] is a distributed algorithm for ensuring critical section mutual
exclusion between a number of concurrent processes. The protocol is simple yet relies
on timing constraints among its processes for correct operation. It has become a
standard for demonstrating verification techniques for timed systems, see for example
[2, 12, 21].

We demonstrate our property verification methodology by treating part of the
specification for correct operation of a Fischer protocol system as a safety property.
We model both the system and the protocol’s essential correctness property (mutual
exclusion) as processes, and verify that the modelled system satisfies the property.

Fig. 2. The Fischer protocol worker process states.



System Description A Fischer protocol system consists of N workers. Each worker
goes about some independent activity (not modelled here) and occasionally attempts
to perform some activity which needs to be protected by a critical section. It is
assumed that in order to operate correctly, the system must have the property that
at most one worker is performing its critical section activity at any instant.

To enact the Fischer protocol, the workers interact by reading from and writing to
a shared register. The register can take on one of N + 1 values, one for each process
plus an “empty” state Z. Figure 2 shows the basic operational cycle of a Fischer
protocol worker. Workers wait (or perform their non-critical activity) in the start
state (A) until the register becomes empty. They may then indicate their intention to
enter their critical section moving to the request state (B), in which case they must
set the register to indicate the fact, and then make the transition to the wait state
(C) within a certain time period. In the wait state the worker will either notice that
another worker has made a later request, in which case this worker aborts its attempt
to enter its critical section and returns to the start state; or the waiting period will
elapse and the worker enters the critical section state (D). Eventually the worker exits
its critical section and returns to the start state, setting the shared register to the
empty state.

3.2 Process Models of System Components

Fig. 3. The Fischer worker process model.

In the construction of our model of a Fischer protocol system, we utilise processes
to model two quite different classes of object. In the following section we use processes
to model abstract temporal constraints needed for the correct operation of Fischer’s
protocol. This leaves us free to model, in this section, the physical elements of the
protocol system without regard to timed behaviour.

Worker processes are modelled in CIRCAL as behavioural processes in a straight-
forward way: a diagram of the worker process model is shown in Figure 3. The process
has four states A, B, C and D. The transitions are labelled with two varieties of ac-
tions. There are actions of the form xy, where x and y are states; the purpose of
these actions is to signal the activity of the process at every transition. As we shall
see later, these actions will be shared with constraint and property processes in order
to refine and analyse the system model.



Each transition is also labelled with an additional actions that indicate the worker’s
interaction with the shared register (which is also modelled as a process). These
actions take the form k := a, where the worker writes a process name a to the register;
or k == a (or k! = a), where the worker reads and tests the value of the register.
These actions are shared with the process model of the register, and coordinate the
activity of the worker process with the register process.

The XCircal code for constructing a worker process is given in Figure 4. 1

Process Fischer(Event ab,bc,ca,cd,da,ksetz,keqz,ksetp,

keqp,kneqp) {

Process A, B, C, D;

A <- (ab keqz) B

B <- (bc ksetp) C

C <- (ca kneqp) A + (cd keqp) D

D <- (da ksetz)

return A

}

Fig. 4. The XCircal code for the worker process.

This prototypical worker process is instantiated with events named to indicate the
worker process in which they occur. For reasons that will become clear later, actions
involving the empty register state also tagged with the worker’s name. For example,
the action pk == z indicates that process P is testing to see if the register’s value
has value Z.

FischerP <- Fischer(pab,pbc,pca,pcd,pda,pksetz,pkeqz,ksetp,
keqp,kneqp)

FischerQ <- Fischer(qab,qbc,qca,qcd,qda,pksetz,qkeqz,ksetq,
keqq,kneqq)

The Shared Register Model Figure 5 shows a process which models the shared
register for a system of two worker processes. The process has one state for each
worker process, plus one state representing the “empty” state of the register (labelled
z). Write actions of the form k := a lead from every state to the state a. For each
state a, read actions of the form k == a lead from a to itself. For clarity, Figure 5
omits the read transitions of the form k!=a : for each A these are present as looping
transitions for all states other than A. Worker processes performing write actions
cause the register to change state, and worker processes will only be able to perform
read actions if the register is in a compatible state. For brevity, we have omitted
XCircal code for the remainder of the transition systems.

The use of this register model has an additional side-effect on the system model.
Because the register process contains only single-action transitions, it prevents the si-

1 Since XCircal does not allow them in event names, the non-alphabetic characters are
transcribed to mnemonic characters in an obvious way.



Fig. 5. The shared register process for a system with two worker processes P and Q.

multaneous occurrence of those actions which might otherwise arise through composi-
tion. This does not limit the scope of our verification, since inter-process concurrency
is modelled through the arbitrary interleaving of actions, which is the approach used
in process algebra that do not have simultaneous actions (e.g. CSP). In other contexts
where it is desirable to model truely simultaneous access to registers, CIRCAL can
be used to construct register models with a variety of concurrency semantics.

The Untimed System Figure 6 shows the Fischer protocol system of two worker
processes, using a simple but powerful (and fully formal) diagramming notation in-
troduced in [5]. In this notation, each rectangle represents an abstraction boundary
containing one or more processes: all actions other than those appearing as “ports”
on the rectangle’s perimeter are abstracted and hidden from the exterior. In a simpli-
fied version of the notation, employed here, lines simply connect ports with identical
names (thus denoting a single shared action). At the innermost level, processes are
ultimately represented by transition diagrams. For reasons of space, we only show a
single level of nesting in a diagram: the internal structure of internal processes are
represented instead by process names.

There are several things to note about the composite system.

– The complete Fischer protocol system consists of the concurrent composition of
the worker processes, the shared register process, and a register-access mediation
process (see below).

– For actions which involve the empty state Z, communication between the register
and worker processes are mediated by an additional process M (pictured in Figure
7). If these each of these events were modelled by a single system-wide action,
this would force each action to be synchronised across all worker processes. This
is clearly incorrect, since it would require all workers to rendezvous for reads or
writes involving the Z register value. Considering the intended behaviour more
carefully, we can see that outside of the register itself, the action of each worker
setting (or checking) a particular register value are distinct events which can occur



Fig. 6. Diagram of untimed Fischer protocol system.

independently. Process M acts as a junction that allows asynchronous access to
shared register actions. This is an example showing how CIRCAL’s simultaneous
action transitions can be used to define a stateless process that encapsulates
a simple relation, in this case mapping separate process write actions onto an
internal register write action.

Fig. 7. Register multiplexer process M

– All the register actions are abstracted from the FischerSystem process. What
remains visible to the outside are the transition-marking actions for each worker
process.

The XCircal code that defines an (untimed) Fischer system with two workers is:

FischerSystem <- (FischerP * FischerQ * Register * Multiport) -



(pksetz pkeqz qksetz qkeqz kneqp kneqq kneqz
ksetp ksetq ksetz keqp keqq keqz)

3.3 Process Models of Timing Constraints

Since the Fischer protocol relies on timing constraints among its worker processes
for correct operation, the untimed model of the Fischer protocol presented above is
inadequate. Specifically, after indicating its intention to enter its critical section, a
worker process P needs to wait “long enough” to ensure that all other workers are
either (a) back at the start state, or (b) have already followed P , usurped P s place,
and have sent P back to the start state.

One approach to modelling the timed behaviour of a Fischer protocol system is to
equip each worker with its own local clock, and predicate certain transitions on clock
values. This is the Timed Automata approach, described for example in [12].

Applying our methodology, we express the “workers wait long enough in state C”
condition purely in terms of the sequences of events allowed (or disallowed) by timing
interval restrictions. The condition that worker P waits long enough for worker Q can
be enforced by the requirement that the interval between the qab and qbc event be
longer than the interval from qab to any pcd event. In other words, once a qab event
has occurred, a pcd event may not occur (i.e. P must wait) until qbc has occurred. A
process that enforces this constraint is shown in Figure 8.

The process shown in Figure 8 is an instance of a family of processes which have the
effect of disallowing a specific sequence of actions. In this case the process disallows the
subsequence qab → pcd in the set of all sequences of events drawn from {qab, qbc, pcd}.
Constraints based on disallowing longer sequences of events can easily be generated,
using an algorithm based on the Knuth-Morris-Pratt string searching algorithm [11].

Fig. 8. Fischer protocol timing constraint between processes P and Q.

This process expresses the constraint that requires P to wait for worker Q. To fully
express the timing constraints for the whole system a constraint process is needed for
every ordered pair of distinct workers, so n(n−1) constraint processes are required for



an n worker system. 2 For our two-worker example, the two instantiated constraint
processes are:

TimingPQ <- TimingConstraint(pcd,qab,qbc)
TimingQP <- TimingConstraint(qcd,pab,pbc)

Applying these timing constraints to our untimed system yields the process:

TimedFischer <- FischerSystem * TimingPQ * Timing QP

The relative timing interval constraint technique employed here is more generic and
less concrete than the use of clock variables in timed automata. Unlike clock variables,
relative timing interval constraints do not directly suggest an implementation in terms
of local clocks used by concurrent processes. It is interesting to note that the nature
of the CIRCAL composition operator allows the timing interval constraint processes
given in this subsection to be replaced by an alternative set of processes which express
the necessary timing constraints in another idiom – as discrete local clocks for each
process for example – without requiring modification to either the worker processes
or the correctness property process (described in the next section).

3.4 Process Models of Behavioural Properties

The mutual exclusion property says that only one process may be in its critical section
at a time. In our model, this property can be expressed in terms of the events that
mark each worker process entering (cd events) and leaving (da events) its critical
section. For a system of n worker processes, a simple n + 1 state property process
indicates what sequences of events are compatible with the mutual exclusion property.
The two-worker version of this property process is show in Figure 9.

Fig. 9. Mutual-exclusion property for two processes P and Q.

2 By using slightly more complex processes, this can be reduced to n constraint processes
for an n worker system. There are a number of different constraint processes that correctly
enforce the Fischer protocol’s timing requirements; the constraint process used here is one
of the simplest.



3.5 Verification

The behaviour of a protocol system (including the shared register and timing con-
straint processes) for two or three workers is simple enough that the mutual exclusion
property can be verified by printing out the critical section behaviour and inspecting
it. Figure 10 shows the complete behaviour of a two-worker protocol system, with all
actions except critical section actions hidden by the abstraction operator. It clearly
conforms to the two-worker mutual exclusion property (the two being in fact identi-
cal).

Start State Transition Label End State

----------- ---------------- ---------

1 ["Pcd"] -> 2

1 ["Qcd"] -> 3

2 ["Pda"] -> 1

3 ["Qda"] -> 1

Fig. 10. Critical section behaviour of worker, register and timing constraint processes.

Larger systems can be verified by using the technique described in section 2.
Treating the mutual exclusion property as a safety condition (it expresses the allowable
behaviours for a correct system), our correctness condition is

TimedFischer * MutexProperty ∼= TimedFischer

where TimedFischer is the system model process (including timing constraint
processes) and MutexProperty is the mutual exclusion property for the appropri-
ate number of workers. Using the current generation of CircalSystem tools we have
successfully performed this verification for systems of at most 5 workers.

4 Discussion

The ability of a modelling formalism to accurately represent timing information is
becoming increasingly significant when designing a range of complex, concurrent sys-
tems such as asynchronous digital logic circuits [7, 20, 4] and network communication
protocols [3].

In this paper we present a practical modelling and verification methodology which
exploits the characteristics of a specific process algebraic composition operator. This
approach differs from existing methodologies.

Rather than augment an automata model with clocks and timed transitions, tem-
poral constraints are expressed as relative timing interval constraint processes. The
primary requirements for use of the interval timing constraints technique are that (a)
the critical states and time intervals in the system are cleanly delimited by actions,
and that (b) timing constraints can be expressed as relationships between these inter-
vals. For the example in this paper the constraint relationship takes the form a relative
differences in interval duration for two intervals that start at the same moment. Other



timing properties known to be amenable to expression as interval constraints include
intervals required to be overlapping (or non-overlapping); and intervals required to be
entirely contained within other intervals. Cowie [6] describes a methodology for trans-
lating a class of constraints normally expressed in an interval algebra to constraint
processes.

Our methodology contrasts with previously described methodologies for modelling
and verifying timing-dependent systems. Timed Automata [1] are formal automata
models which include a real-valued local clock value for each process, and allow transi-
tions to be predicated on clock values. The Uppaal and TVS systems are toolsets that
include model-checkers for Timed Automata (Fischer protocol verification examples
for each are reported in [12] and [2]).

Timed process algebra [17] extend untimed process algebra (such as CCS, CSP or
ACP) with operators for expressing the possibility that transitions may be delayed a
certain period after they become active. [21] describes the Fischer protocol in terms
of a discrete-time and a real-time process algebra.

A third approach to modelling and analysing timed systems is to introduce timing
components (e.g. clock processes and “clock tick” actions) into an untimed framework
such as an untimed process algebra. The result is a system somewhat similar to
discrete-time process algebra, but where the timing constraints are expressed as model
components rather than in language of the surrounding formalism. An example of this
is given in [3].

The methodology described in this paper contributes to the state of the art of
formal methods by providing (1) an alternative technique for defining constraints in
timing-critical systems: separate constraint processes which define relationships be-
tween critical timing intervals; and (2) an alternative technique for verifying properties
in such systems: the composition-based verification technique, which does not require
the introduction of temporal logic, model-checking or refinement relation checking.

This elegant approach does not introduce any additional mathematical concepts,
and capitalises on a concept already very familiar to engineers: processes described
by state transition diagrams. The methodology presented in this paper thus presents
a lower barrier of entry to design engineers that would otherwise be unlikely to adopt
formal methods techniques, and provides an additional set of tools for the experienced
formal methods practitioner.

We see this methodology being used, as in the Fischer protocol example, to anal-
yse complex systems in terms of sequences of critical events. Experimentation and
modelling at this level can be used to develop correct algorithms and protocols.

We would like to acknowledge that this research has been funded in part by the
Australian Research Council.

References

1. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

2. Marcel Ammerlaan, Ronald Lutje Spelberg, and Hans Toetenel. XTG - an engineering
approach to modelling and analysis of real-time systems. In 10th Euromicro Workshop
on Real Time Systems, pages 88–97. IEEE Computer Society Press, June 1998.



3. A. Cerone, A. J. Cowie, G. J. Milne, and P. A. Moseley. Modelling a time-dependant
protocol using the Circal process algebra. Lecture Notes in Computer Science, 2102:124–
138, 1997.

4. A. Cerone, D. A. Kearney, and G. J. Milne. Integrating the verification of timing, perfor-
mance and correctness properties of concurrent systems. In The International Confer-
ence on Application of Concurrency to System Design, pages 109–119. IEEE Computer
Society Press, 1998.

5. A. Cerone and G. J. Milne. A methodology for the formal analysis of asynchronous
micropipelines. In International Conference on Formal Methods in Computer-Aided
Design (FMCAD’00), number 1954 in Lecture Notes in Computer Science, pages 246–
262. Springer-Verlag, 2000.

6. Alex Cowie. The Modelling of Temporal Properties in a Process Algebra Framework.
PhD thesis, University of South Australia, 1999.

7. S. B. Furber and P. Day. Four-phase micropipeline latch control circuit. IEEE Trans-
actions on VLSI Systems, 4(2):247–253, June 1996.

8. C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer
Science. Prentice Hall, 1985.

9. Joel Kelso. Proof of the soundness of the concurrent composition property checking
technique. Technical Report Report-05-NNN, School of Computer Science and Software
Engineering, Univeristy of Western Australia, 2005.

10. Joel Kelso and George Milne. The prototype Haskell CIRCAL system.
http://www.csse.uwa.edu.au/FormalSpecification/HaskellCircal/, 2003.

11. D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM
Journal on Computing, 6(1):323–350, 1997.

12. K. J. Kristoffersen, F. Laroussinie, K. G. Larsen, P. Pettersson, and Wang Yi. A com-
position proof of a real-time mutual exclusion protocol. Technical Report RS-96-55,
Aalborg University, Denmark, 1996.

13. Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer
Systems, 5(1):1–11, 1987.

14. George J. Milne. CIRCAL and the representation of communication, concurrency and
time. ACM Transactions on Programming Languages and Systems, 7(2):270–298, 1985.

15. George J. Milne. Formal Specification and Verification of Digital Systems. McGraw-Hill,
1994.

16. Robin Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

17. Xavier Nicollin and Joseph Sifakis. An overview and synthesis on timed process algebras.
In Kim Guldstrand Larsen and Arne Skou, editors, Computer Aided Verification, 3rd
International Workshop, CAV ’91, volume 575 of Lecture Notes in Computer Science,
pages 376–398. Springer, 1992.

18. G. Plotkin. Structural operational semantics. Technical Report DAIMI FN-19, Aahus
University, 1981 (reprinted in 1991).

19. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997.
20. Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–738, 1989.
21. J. Vereijken. Fischer’s protocol in timed process algebra. Technical Report CSR 94/32,

Eindhoven University of Technology, Computing Science Department, 1994.


