
Modelling Dynamically Changing Hardware
Structure

George J Milne1

School of Computer Science and Software Engineering
The University of Western Australia

M002/35 Stirling Highway, Crawley WA 6009, Australia

Abstract

Techniques for modelling reconfigurable computing hardware using a process algebra are given. Dynamically
changing hardware is modelled using a process algebra with dynamic sorts, where the sort changes through
time. A programming technique based on this dynamic structure process algebra is outlined.

Keywords: process algebra, reconfigurable computing, dynamic structure hardware, circuit modelling

1 Introduction

Digital hardware is a natural application domain for process algebra given that
circuits exhibit inherently concurrent behaviour, possibly massive concurrency. The
impetus for modelling and verifying digital hardware resulted in the development
of a process calculus with features influenced by concepts inherent in digital logic.
This exercise was heavily influenced by the work of Robin Milner, on CCS [11] and
its precursor [10], and resulted in the development of the circuit calculus known as
Circal [6].

In 1990 a number of us at the University of Strathclyde in Glasgow wished to
use field programmable gate arrays (FPGAs) as the enabling technology for a new
computer architecture which could be programmed as a custom machine for sim-
ulating spatially distributed, highly concurrent applications. The underlying idea
was fairly straightforward; we would map systems which exhibited large amounts of
fine-grained concurrency and local interconnections onto an FPGA-based architec-
ture. The resulting configuration provided us with a customised hardware simulator
for physical systems, such as fluid flow, with a 1-1 correspondence between physical

1 Email: george@csse.uwa.edu.au

Electronic Notes in Theoretical Computer Science 162 (2006) 249–254

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.12.091

mailto:george@csse.uwa.edu.au
http://www.elsevier.com/locate/entcs


components and an area of digital logic which implements its model. Such architec-
tures are now known as reconfigurable computers e.g. [9,1]. It was felt that Circal
was a suitable language with which to prescribe a system to be realised as hardware,
rather than as a language to model previously designed circuitry. Process algebra
allows us to describe systems of interacting automata, with each automaton being
described by a process. This is the basis of techniques for compiling from process
algebra to FPGA logic, described in [3,2]. The appropriateness of using process
algebra to programme reconfigurable computers is examined in [5].

Reconfigurable computing differs from the classical von Neumann computing
paradigm in that a program does not reside in memory but rather an application is
realised directly in digital logic. As this logic is repeatedly programmable then the
underlying FPGA platform may be instantiated to create different custom computer
realisations for each distinct application. Furthermore, certain FPGA technologies
are dynamically reconfigurable in that part of the FPGA logic may be reconfigured
while another part is running. That is, our programmable hardware can be modified
as it runs and, furthermore, it has the potential to be self-modifying, a concept which
has traditionally been considered anathema in the software world, as described
by Tony Hoare [4]. Dynamic reconfiguration thus allows the hardware structure
to change at run-time, in contrast to traditional computing systems with fixed
structure. The need to programme dynamically changing hardware structure has
then lead to the introduction of dynamic structure Circal (dsCircal) [8].

Circal is static in that we may only model systems with a fixed structure; this
is adequate for modelling many types of systems, such as digital hardware [7] and
even road networks [9]. The notion of a fixed, static sort has been extensively used
to represent the structure of concurrent systems with a fixed topology. The concept
was introduced in [10], with this early work leading to the development of both CCS
and Circal. The notion of sort is significant in Circal since the Circal composition
operator is dependent on the sort of its operands.

A system of processes composed together adopts the structural synthesis conven-
tion that similarly named ports will link together. Processes change state following
the synchronised occurrence of actions over all similarly named ports. Thus we have
state changes caused by the occurrence of actions which guard the new states. We
extend this concept to one where guarding actions can also control the change in pro-
cess structure. That is, not just into a new state retaining the same structure, but
into a new process with quite distinct structure. The structure can therefore change
through time under the controlling influence of other processes in the environment.
This is the concept of dynamic sort. Dynamic structure Circal then differs from
Circal in that it allows the sort of a process to (possibly) evolve through time under
the control of suitable actions. The sort of a process is explicitly represented as a
vector of labels which is juxta-positioned with the corresponding process identifier,
as with a simple process with static structure defined by:

P 〈a, b〉 def
= aP1 + bP2(1)

G.J. Milne / Electronic Notes in Theoretical Computer Science 162 (2006) 249–254250



Here we assume that renewal processes P1 and P2, which are defined elsewhere,
have the same static sort, namely 〈a, b〉. But suppose we have a process named Q

which “starts” with the same sort but which after event b changes into a process
with sort 〈c, d, e〉, then we may have:

Q 〈a, b〉 def
= aQ1 + bQ2 〈c, d, e〉(2)

where

Q2 〈c, d, e〉 def
= (c, d)Δφ + eQ 〈a, b〉(3)

This captures a process Q2 which responds to a simultaneous action (c, d) by
becoming extinct (the null process Δ with the empty sort) and to an e event by
recursing back to Q.

2 A Simple Dynamic Structure

Given a system of three processes A,B and C defined by:

A 〈a, p〉 def
= aA + pA(4)

where

B 〈p, t1〉 def
= pB + t1B1 〈q, t2〉(5)

B1 〈q, t2〉 def
= qB1 + t2B 〈p, t1〉(6)

C 〈c, q〉 def
= cC1 + qC(7)

A system constructed from these three processes may then be defined as follows:

SY S 〈a, p, c, q, t1〉 def
= A 〈a, p〉 ∗ B 〈p, t1〉 ∗ C 〈c, q〉(8)

Processes A and C have static structure, that is, their sort remains fixed through
time. Only process B has dynamic sort which can change (initially) as a result of
an externally generated action on port t1. Action t1, therefore acts as a trigger
action causing process B to evolve into process B1, whose sort is different. Process
B1 can react to action t2, also generated externally, and toggle back to its original
incarnation as process B. The change of structure, caused by trigger actions on
process B, causes the structure of the system SY S to change. As B evolves into

G.J. Milne / Electronic Notes in Theoretical Computer Science 162 (2006) 249–254 251



B1, as a consequence of action t1, the p link disappears simultaneously with the
appearance of a q link. Action t2 in B2 causes the reverse to occur. This evolution
between two distinct system structures, and its potential to evolve back to the
original configuration, is pictured in the following figure:

A

a

B

t1

C

c

q

p

a

A

p

B

t2

c

C

q

evolves to

A

a

B

t1

B

t1

C

c a

q

p

A

p

B

t2

c

C

q

a

A

p

a c

A C

p

B

t2

q

evolves to
B1

t2

Notice that while our system has dynamic structure, this is in terms of changing
interconnect over a fixed number of processes, three in this case. For dynamic
reconfiguration in hardware we also require process creation, extinction and possibly
mobility and so also the creation and destruction of their interconnecting links. The
creation and destruction of processes may also take place under the control of actions
occurring on specific control ports.

3 Programming Reconfigurable Hardware

In von Neumann computation the sequential behaviour of an executing processor
generally manipulates input data into output data by following a sequence of ac-
tivities described by the programming language. The program, its compiler and
the design of the microprocessor which ultimately determines the behaviour of the
executing code. In a concurrent world, one where computation is effected by a
direct mapping into programmable digital logic, a similar situation also exists. In
this case we may also use a language to describe computation with the language di-
rectly supporting the concurrent interactions over dynamic structures, as captured
by the dsCircal syntax. Again code will execute but rather than imagine dsCircal
fragments being compiled and executed on sequential computers, we will focus on
the realisation of the encoded behaviour directly in digital logic

Blocks of FPGA logic cells will be allocated and configured to perform the
functional behaviour of a fixed structure; that is, the behaviour captured by in-
terconnected processes which do not change their structure for a given period of
time. Hence they retain a fixed sort for that period of time. During that period
quite distinct behaviour may be realised as the process evolves through a finite set
of states. However, any interaction between this process and its environment will
occur though the fixed set of ports denoted by its sort.

When our processes have dynamic sort then we can have a process P which
changes into another Q with a totally different structure, following the occurrence
of a guarding action. We may realise the behaviour encoded in such a dsCircal
process as follows:

G.J. Milne / Electronic Notes in Theoretical Computer Science 162 (2006) 249–254252



INTERMEDIATE FORMTEXTUAL DESCRIPTION DIGITAL HARDWARE REALISATION

dsCircal process configuration logic block corresponding gene

We may imagine that available FPGA logic is limited and that only the con-
figuration block for process P may be realised. An encoding of sub-process Q will
reside in a suitably identified memory location. When the enabling action occurs
causing process P to evolve to the structurally (and behaviourally) distinct process
Q, the configuration realising Q will be constructed from the encoding residing in
memory. This new configuration will overlay the configuration block for P , hence
our machine will be dynamically reconfigured as behaviour passes from P to Q with
process P itself causing the reconfiguration as it evolves from P into Q. The data
necessary to reconfigure a block of FPGA cells consists of a stream or sequence of
bits. This bit stream is loaded into RAM where each memory location controls a
corresponding part of the programmable gate array of the FPGA. This is used to
select the logical functionality of the underlying, primitive configurable unit, often a
gate or simple ALU, while also selecting the interconnectivity between such config-
urable logic building blocks. As with dsCircal, both the set of primitive agents, the
configurable logic blocks, and their connective structure is dynamic and can change
through time.

The process encoding residing at a location is known as a process gene, or gene for
short. Just as a strand of DNA encodes or maps how proteins are constructed from
sequences of amino acids, so our process gene encodes how the hardware building
blocks of our underlying FPGA technology are constructed such that when they
become active they realise the desired behaviour. The analogy with genetics is even
stronger since DNA also encodes temporal information in that only part of a DNA
strand may be responsible for the construction of a current protein and this protein
may change under the control of the DNA encoding. The particular choice and
ordering of occurrence of the amino acids determines how they combine and hence
determines the structure of the constructed protein.

The compilation from process expression to realisation in FPGA hardware is
pictured as follows:

A process generator function takes a process encoding gene and produces the
hardware which directly realises the corresponding process behaviour.

Genes are active data and when interpreted result in an object, such as a block
of configurable FPGA logic, which exhibits active behaviour. The ability to store
genes at a location and to fetch a copy of the gene on demand permits us to com-
municate process encodings. Thus the active digital hardware implementations of
two processes may communicate a third process from one to the other, by sending
its identifier name to the receiving process. This identifier name is then used by
the receiver to “nlock the corresponding location” and extract the contained gene.
This gene may then be used by the receiver and a process generator to produce the
implementation of the communicated process as a configuration logic block. This
active data, namely the hardware realisation of the communicated process, will then

G.J. Milne / Electronic Notes in Theoretical Computer Science 162 (2006) 249–254 253



be capable of execution as required.

References

[1] Barrie, P., P. Cockshott, G. Milne and P. Shaw, Design and verification of a highly concurrent machine,
Microprocessors and Microsystems 16 (1992), pp. 115–123.

[2] Diessel, O. and G. Milne, Behavioural language compilation with virtual hardware management., in:
R. Hartenstein and H. Grunbacher, editors, 10th International Workshop on Field Programmable Logic
and Applications (FPL 2000), Villach, Austria, Lecture Notes in Computer Science 1896 (2000), pp.
707–717.

[3] Diessel, O. and G. Milne, A hardware compiler realising concurrent processes in reconfigurable logic,
IEE Proceedings - Computers and Digital Techniques 148 (2001), pp. 152–162.

[4] Hoare, C., Hints on programming language design, Technical Report STAN-CS-73-403, Standford
Artificial Intelligence Laboratory, Stanford University, Stanford (1973).

[5] Lee, G. and G. Milne, Programming paradigms for reconfigurable computing, Microprocessors and
Microsystems 29 (2005), pp. 435–450.

[6] Milne, G., CIRCAL and the representation of communication, concurrency and time, ACM
Transactions on Programming Languages and Systems 7 (1985), pp. 270–298.

[7] Milne, G., “The Formal Specification and Verification of Digital Systems,” McGraw-Hill Company,
Europe, 1994.

[8] Milne, G., A model for dynamic adaptation in reconfigurable hardware systems, in: A. Stoica, editor,
First NASA/DOD Workshop on Evolvable Hardware, July 19-21, 1999. Pasadena California. IEEE
Computer Society Press, 1999, pp. 161–169.

[9] Milne, G., P. Cockshott, G. McCaskill and P. Barrie, Realising massively concurrent systems on the
SPACE machines, in: Proceedings IEEE Workshop on FGPA’s for Custom Computing Machines, IEEE
Computer Society Press (1993), pp. 26–32.

[10] Milne, G. and R. Milner, Concurrent processes and their syntax, Journal of the ACM 26 (1979),
pp. 302–321.

[11] Milner, R., “Communication and Concurrency,” International Series in Computer Science, Prentice-Hall
International, New York, 1989.

G.J. Milne / Electronic Notes in Theoretical Computer Science 162 (2006) 249–254254


	Introduction
	A Simple Dynamic Structure
	Programming Reconfigurable Hardware
	References

