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Abstract

Background: In the absence of other evidence, modelling has been used extensively to help policy makers plan for a
potential future influenza pandemic.

Method: We have constructed an individual based model of a small community in the developed world with detail down to
exact household structure obtained from census collection datasets and precise simulation of household demographics,
movement within the community and individual contact patterns. We modelled the spread of pandemic influenza in this
community and the effect on daily and final attack rates of four social distancing measures: school closure, increased case
isolation, workplace non-attendance and community contact reduction. We compared the modelled results of final attack
rates in the absence of any interventions and the effect of school closure as a single intervention with other published
individual based models of pandemic influenza in the developed world.

Results: We showed that published individual based models estimate similar final attack rates over a range of values for R0

in a pandemic where no interventions have been implemented; that multiple social distancing measures applied early and
continuously can be very effective in interrupting transmission of the pandemic virus for R0 values up to 2.5; and that
different conclusions reached on the simulated benefit of school closure in published models appear to result from
differences in assumptions about the timing and duration of school closure and flow-on effects on other social contacts
resulting from school closure.

Conclusion: Models of the spread and control of pandemic influenza have the potential to assist policy makers with
decisions about which control strategies to adopt. However, attention needs to be given by policy makers to the
assumptions underpinning both the models and the control strategies examined.
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Introduction

With continuing concern about the possibility of another

influenza pandemic, many models have been developed to predict

the course of the pandemic and the effect of potential intervention

strategies. Approaches to modelling the spread of infectious

respiratory diseases have included deterministic [1,2], stochastic

[3–5] and individual-based models [6–12]. These models have

ranged in focus from the whole world [1,3,4], through large [8,10]

and small [7,9] countries, to synthetic small communities [11].

However, while there are many individual-based models, no model

constructed to date has focused on a precise replication of a small

community, with detail down to individual schools, employers, and

the exact make-up of households as extracted from census datasets.

We have developed a detailed spatio-temporal model of the

Albany town and surrounding district. Albany, a relatively isolated

community of approximately 30,000 people in the south of

Western Australia, is a regional centre with one major hospital,

one technical college, 22 schools and approximately 1200

employers. We believe that this modelled population provides us

with a large enough experimental test-bed to capture the daily

mobility of individuals as found in a developed nation. Using this

model we examined the impact that social distancing measures

might have in mitigating an influenza pandemic, given that social

distancing measures can be implemented early in a pandemic by

developed and developing countries alike.

We aimed to demonstrate the development of the model and its

application to a human pandemic, with a pandemic virus
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spreading into the community from other parts of the state. We

explored social distancing measures that included school (and child

care) closure, reduced workplace attendance, reduced social and

community contact, and increased home isolation of symptomatic

individuals. These measures were examined for epidemics with

basic reproduction numbers of 1.5, 2.0 and 2.5. The basic

reproduction number (R0) is the average number of secondary

cases that would be infected by a single infectious individual in a

totally susceptible population, and is a measure of the transmis-

sibility of an infectious disease. Since the R0 value of a new

pandemic strain of influenza is unknown, we covered a range of R0

estimates for previous pandemics [7,8,13]. Furthermore we

compared the baseline outputs of our model and the effects of a

specific social distancing measure, school closure, with the results

from other individual-based models.

Methods

Population model construction
We constructed a geographic and demographic model of

Albany, Western Australia using a location-based connected

spatial structure [3,14–16]. Australian Bureau of Statistics Census

Collection Districts (CCD) were the finest level of spatial detail

used, with each CCD consisting of approximately 200 physically

adjacent households. Each such area was populated with a

number of households according to the 2001 census data [17]; the

constituent households each being uniquely populated with

individuals whose specific ages matched the demographics and

household age-structure of each CCD.

The model was further populated with a set of schools and

workplaces, referred to collectively as contact hubs. Data from the

state government of Western Australia were used to obtain a

comprehensive list of schools, childcare facilities, adult education

institutions (provided by the Department of Education and

Training; Frankland D, personal communication) and employers,

including the location in which they were located and their

nominal daytime population (provided by the Department of

Planning and Infrastructure; Piscicelli A, personal communica-

tion). Each child was assigned to a school or childcare centre,

presuming that children attended a school as close to their home

location as possible, and ensuring that the known age structure of

schools was maintained. Adult students and workers were assigned

to adult education institutions and workplaces respectively, with

this assignment being made with reference to census journey-to-

work information survey data for Western Australia (provided by

the Department of Planning and Infrastructure; Pradzynski J,

personal communication).

Application of the model to influenza infection
Using this population model, we conducted stochastic, individ-

ual-based spatial simulations of an influenza epidemic, assuming

that an average of one new infection per day was introduced into

the population for the duration of the simulation. Each simulation

proceeded in a sequence of 12 hour day/night cycles. During each

cycle the nominal location of each individual was decided: either

household or hub, taking into account the cycle type (i.e. day/

night, weekend/weekday), the individual’s infection status and

whether an individual needed to stay at home to supervise a child.

During each cycle, individuals occupying the same location were

deemed to come into potential infective contact when infection

transmission could occur. For larger hubs, including schools, we

assumed it was unlikely that an individual would come into close

contact with every other member of the hub during a cycle. These

larger hubs were therefore divided into fixed mixing groups, with a

maximum size of 10 individuals per group. In schools these mixing

groups consisted of same-aged children where possible; in

workplaces they were randomly assigned. The overlapping

memberships of households and hubs formed a connected social

network (see Figure 1). A study using mobile telephone location

data has shown that human movement is dominated by a

Figure 1. Idealised household and hub contact network.
doi:10.1371/journal.pone.0004005.g001
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recurrent pattern with a 24-hour period [18], indicating that our

assumption that individuals occupy two primary locations (a

household and a hub) is a reasonable abstraction of human

mobility in the developed world. Additional information about the

population model construction and simulation algorithm can be

found in Supplementary Information Text S1.

In addition to household and hub contact, individuals in the

simulation also engaged in random or untraceable community

contacts. This contact was assumed to be local in nature, with

contacts between individuals from the same or nearby areas being

relatively more likely than contact with individuals from distant

patches.

When an infectious and susceptible individual came into contact

during a simulation cycle, the probability that the infection was

transmitted was calculated according to a transmission function (see

below). For each contact event, an infection state (either to remain

susceptible or to become infected) for the susceptible individual

was randomly chosen via a Bernoulli trial [19]. The transmission

probability Ptrans for a contact event is a function of the states of the

infectious (Ii) and susceptible (Is) individuals involved:

Ptrans Ii, Isð Þ~b|inf Iið Þ|susc Isð Þ

where b is the basic transmission coefficient, initially chosen to give

an epidemic with a final attack rate consistent with seasonal

influenza. To achieve simulations under a range of reproduction

numbers, b was increased from the baseline value to achieve

epidemics with target R0 values of 1.5, 2.0 and 2.5 (see

Supplementary Info Table S1.1). R0 was derived by inserting an

infectious individual randomly into a totally susceptible popula-

tion, counting the number of resulting secondary infections, and

averaging over 10,000 such trials. This is also the method used to

derive R0 in [7–10]; additional information may be found in

Supplementary Info Text S1.

The infectivity parameter inf(Ii) was set to 1 for symptomatic

individuals, and 0.5 for infectious but asymptomatic individuals.

The susceptibility parameter susc(Is) is a function directly

dependent on the susceptible person’s age. It captures the age-

varying susceptibility to transmission, due to both partial prior

immunity and age-related differences in contact behaviour. To

achieve a realistic age specific infection rate, the age-specific

susceptibility parameters were calibrated against the serologic

infection rates reported for H3N2 in 1977–1978 in Tecumseh,

Michigan [20] (see Supplementary Information Table S1.2). We

included in our sensitivity analyses an alternative calibration of

age-specific susceptibilities that gave rise to a flat age-specific

attack rate, similar to that of the 1968 pandemic [21] (see

Supporting Information Text S2).

Influenza infection was modelled to last 6 days: 1 day latent, 1

day asymptomatic and infectious and 4 days infectious (either

symptomatic or asymptomatic). We also assumed constant

infectivity for the infectious period, which is a simplification of

the presumed infectivity distribution found in studies of viral

shedding [21,22]. For baseline (no-intervention) epidemics with R0

values of 1.5, 2.0 and 2.5 these timing parameters gave serial

intervals of 2.97, 2.87, 2.74 days respectively, which are consistent

with previous estimates for pandemic and seasonal influenza

[7,13,23].

Infected individuals were assumed to be immune to re-infection

for the duration of the simulation. We also assumed that influenza

symptoms developed 48 hours after infection with 20% of

infections being asymptomatic in people aged 18 years or less

and 32% being asymptomatic among older adults. These

percentages were derived by summing the age-specific antibody

titres determined in Table 5 of [24]. Symptomatic individuals were

modelled to withdraw into the home with probability 50% for

adults and 90% for children (ages 6–17).

We have used ‘‘illness attack rate’’ or ‘‘attack rate’’ to mean the

proportion of the population who experience symptomatic

infection, while ‘‘infection rate’’ refers to the proportion who

were infected with symptomatic or asymptomatic infection.

Application of the model to pandemic influenza
We assumed similar viral characteristics for pandemic influenza

as we developed for seasonal influenza, as is suggested by existing

data for H5N1 [25]. We further assumed a pandemic had been

declared in South-East Asia, that the pandemic virus was already

thought to be in Australia and that our modelled population was

aware of the likely arrival of the pandemic strain. We therefore

assumed a level of spontaneous social distancing in response to

public health announcements and news reports. Such pandemic

behaviour was assumed to contrast with that which occurs with

seasonal influenza where overall mobility and contact patterns of

asymptomatic individuals, and even some who are ill and

symptomatic, remain unaltered. Baseline parameters were chosen

to give rise to an epidemic with the following characteristics: an R0

of 1.5 giving a final illness attack rate of 34%, with 43% of

infections occurring in households, 29% in schools and workplac-

es, and 26% from community contact. Based on seasonal influenza

data [20] it has been estimated that 33%–37% of transmission

occurs in the household [8]. Given that public knowledge of a

current pandemic would induce spontaneous social distancing, we

believe it reasonable to assume a lower level of community, school

and workplace contact and a higher proportion of household

transmission (43% rather than approximately 35%).

Modelling interventions in a pandemic
We simulated four different non-pharmaceutical

intervention measures as follows. School closure. We

assumed that when schools were closed, students and teachers

spent weekday daytime cycles at home rather than at school. This

meant that no contact took place at that school hub, but that these

individuals would contact any other individuals present in their

household during the day cycle. We assumed that no additional

community contact occurred (community contact was deemed to

occur in all daytime cycles for active individuals, regardless of

whether they were present at a hub or home). We also assumed

that if school closure would result in a child being present in a

household alone, one adult from the household stayed home (and

did not make hub contacts). We assumed school closure applied to

childcare facilities, all schools, and all adult educational

institutions.

Increased case isolation. Our baseline assumption was that

upon becoming symptomatic, there was a 50% chance that an

adult, and 90% chance that a child, would withdraw to their

household for the duration of their infection (infectivity and

symptoms were deemed to cease at the same time). When the

increased case isolation intervention was in effect, this increased

house withdrawal to 90% for adults and 100% for children (ages

6–17). We assumed that withdrawn individuals made only

household contacts while withdrawn.

Workplace non-attendance. When this measure was in

effect, each person attending a (non-school) workplace hub had a

50% chance each day of staying home instead of attending the hub

(the choice was made independently each day and applied only

that day). Individuals staying at home made no hub contacts but

did contact all other individuals also at home during the day cycle.

Comparison of School Closure
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Community contact reduction. When this measure was in

effect, it was assumed that individuals participating in community

contact during a simulation cycle made 50% of the baseline

number of effective contacts.

The degree of compliance to any intervention measure will

obviously influence the effectiveness of the measure. For our

simulations we have chosen parameters that, while severe, may be

plausible in the context of a pandemic with significant mortality.

Results of simulations examining the relationship between the

degree of compliance and the derived effectiveness of each

intervention are reported in Text S2.

Comparison with other individual based studies
We reviewed the published results from five individual based

simulation studies of the developing and developed world settings

[7–11] and compared final infection rates from these studies and

the effect of simulated school closure with the corresponding

results from our own modelling. In some cases, symptomatic attack

rates were reported; we converted these to infection rates using the

asymptomatic infection proportion used by that study.

Additional information about this aspect of the study can be

found in Supporting Information Text S1. All numerical model

parameters are listed in Supporting Information Table S1.

Results

Pandemic characteristics with no interventions
We conducted baseline simulations (assuming no intervention

measures) for epidemics with R0 values of 1.5, 2.0 and 2.5 As our

simulations are stochastic in nature, the outcome of a simulated

epidemic for a fixed set of model parameters varied depending, for

example, on the choice of individuals who were ‘‘seeded’’ as

infectious index cases; the outcome of possibly infectious contact;

and the probabilistic contact behaviour of individuals. All results

were averages of 40 independent simulation runs made with

different random number seeding sequences. As we assumed a

continuous influx of infectious cases from outside the simulation

boundary at a rate of one per day, we achieve a sustained epidemic

for every simulation. Final attack rates ranged from 33% to 65%

corresponding to R0 values of 1.5 and 2.5, while peak daily attack

rates ranged from 89 to 474 cases per 10,000 (Table 1).

Modelling social distancing interventions
We simulated the effects of four different non-pharmaceutical

interventions: school closure, increased voluntary isolation of

symptomatic individuals, workplace non-attendance and reduced

community contact, with assumptions about each intervention as

described above. We simulated the optimal application timing of

the measures by assuming that the interventions were implement-

ed prior to the introduction of the first infected case and continued

indefinitely. In Table 2 we present figures capturing the

cumulative and daily attack rates determined by simulated

epidemics with (unmitigated) R0 values of 1.5, 2.0 and 2.5. We

also conducted a series of simulations to determine the sensitivity

of intervention measures to variation in key model parameters,

including the degree of compliance, with results presented in the

Supporting Information Text S2.

For epidemics with an unmitigated R0 of 1.5, case isolation,

school closure or community contact reduction made significant

reductions in the final attack rate, reducing it from 33% to 6%,

13% and 16% respectively. School closure combined with any of

the other interventions reduced the cumulative attack rate to

below 10%, which may be deemed to be the threshold below

which an epidemic does not occur. School closure combined with

case isolation reduced the final attack rate to 8%. For epidemics

with an R0 of 2.5, only the combination of all the modelled

intervention measures appeared capable of controlling the

epidemic, reducing the final attack rate from 65% to 3%. School

closure combined with case isolation more than halved the final

attack rate (to 30%). To achieve the large reductions in attack rates

for R0 values of 2.0 and 2.5, combinations of interventions needed

to operate for unfeasibly long periods of time (greater than 5

months).

The effect of interventions on peak daily attack rates followed a

similar pattern to that of final attack rates, although the

proportional reductions resulting from each intervention was

larger than for final attack rates.

Comparison with other studies
The characteristics of our baseline epidemics were consistent

with other simulations based on stochastic individual-based

models, specifically [7–11]. Figure 2 shows predicted final

infection rates plotted against basic reproduction number R0 for

five such models: orange (Ferguson et al 2005, Thailand) [7], light

green (Ferguson et al 2006, United Kingdom) [8], brown (Longini

et al 2005, Thailand) [9], dark green (Germann et al 2006, U.S.A.)

[10], and light blue (Glass et al 2007, a synthetic 10,000 member

community) [11]. Dark blue represents this study. The final

infection rate predicted by a simple susceptible-infected-removed

(SIR) differential equation model assuming uniform [26] is

included for comparison (red). It should be noted that Figure 2

Table 1. Simulated outcome of baseline (no-intervention) epidemics for three R0 values.

R0 = 1.5 R0 = 2.0 R0 = 2.5

mean (95% CI) mean (95% CI) mean (95% CI)

Final infection rate (%) 39.6 (60.5) 66.7 (60.2) 79.6 (60.1)

Final illness attack rate (%) 33.2 (60.4) 54.9 (60.2) 64.8 (60.1)

Peak symptomatic population (%) 5.3 (60.17) 17.1 (60.17) 28.3 (60.17)

Peak daily attack rate (cases per 10000) 89 (63.0) 279 (63.6) 474 (65.8)

Peak attack day 58 (62.3) 37 (61.0) 28 (60.7)

Serial interval (days) 2.97 (60.005) 2.87 (60.004) 2.74 (60.003)

Model parameters for the R0 = 1.5 epidemic were determined as described in the text. The fundamental transmission probability b was increased to give epidemics with
measured R0 values of 1.5, 2.0 and 2.5. The statistics given for each baseline epidemic are means of 40 independent randomly seeded simulation runs (95% confidence
intervals for the 40-run means are given in parentheses).
doi:10.1371/journal.pone.0004005.t001
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is similar to Figure 2 in the work of Roberts et al [2]. Both figures

plot final infection rate against R0 for a number of individual-

based models. Our figure adds additional data points for the

Ferguson et al 2006 study [8] and includes two additional models:

the Glass et al 2007 study [11] and the study described in this

paper.

School closure was the most widely represented non-pharma-

ceutical intervention in comparable simulation studies. Three

previous studies [8,10,11] simulated school closure as a sole

intervention measure. Table 3 compares the effect of school

closure for these studies and our own. The effect of school closure

on final infection rates is shown, and for each study assumptions

about the operation of school closure are summarised.

Most models concluded that school closure would have only a

modest effect when R0 was approximately 2.0. Ferguson et al [8]

modelled school closure occurring for periods of 3 weeks triggered

by the appearance of a case within the school, and found a 4%

decrease in the infection rate (68% to 64%). The effect on the

infection rate was more dramatic in the model of Germann et al,

decreasing from 65% to 44%, but this model assumed that school

closure caused no additional increase in interpersonal contact [10].

Early and continuous school closure in the model of Glass et al

resulted in a decrease in the infection rate from 73% to 50% [11].

Our model, also assuming early and continuous school closure,

resulted in a decrease in infection rate from 67% to 55%.

Discussion

The scale of our model (approximately 30,000 individuals) is

both small enough to allow the collection of detailed information

and large enough to encompass the level at which public health

planning and response might take place.

The model of Albany was constructed using a large number of

parameters and is sensitive to the values assigned to them. We

have utilised data from studies of past pandemics, from seasonal

influenza epidemics and from related modelling work to set

parameters but some parameters remain difficult to estimate.

Sensitivity analyses, reported in Supporting Information Text S2,

suggest that the model is most sensitive to assumptions regarding

mixing group sizes in schools; the relative number of community

Table 2. Simulated final and peak daily attack rates for epidemics with non-pharmaceutical interventions.

Intervention scenario R0 = 1.5 R0 = 2.0 R0 = 2.5

Final
attack
rate %

Peak daily
attack rate
(cases per 10000)

Final
attack
rate %

Peak daily
attack rate
(cases per 10000)

Final
attack
rate %

Peak daily
attack rate
(cases per 10000)

Baseline 33 89 55 279 65 474

School Closure 13 20 45 146 60 321

Case Isolation 6 9.0 30 78 49 221

Workplace Nonattendance 24 54 48 210 60 389

Community Contact Reduction 16 25 41 142. 55 291

School Closure+Case Isolation 3 4.0 8 12 30 67

School Closure+Workplace Nonattendance 6 10 34 80 54 25

School Closure+Community Contact Reduction 3 5.0 12 17 36 89

All Measures 2 3.0 2 4 3 5

Final attack rates and peak daily attack rates are given as percentages of the population, for epidemics with baseline R0 values of 1.5, 2.0 and 2.5. For each measure or
combination of measures, results are given for optimal application (pre-emptive activation and indefinite duration). All results are means of 40 independent randomly
seeded simulation runs.
doi:10.1371/journal.pone.0004005.t002

Figure 2. Simulated final infection rates plotted against basic reproduction number R0 for a number of epidemic models, assuming
no intervention.
doi:10.1371/journal.pone.0004005.g002
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contact, compared with household and hub contact; the

proportion of asymptomatic infections; and the age-specific attack

rate, specifically whether children are more susceptible to infection

than adults.

Potential impact of non-pharmaceutical interventions
We have examined the impact that non-pharmaceutical

interventions may have on the course of a pandemic in a

systematic manner, investigating a range of interventions in

isolation and in combination. Our results suggest that the rapid

activation of multiple non-pharmaceutical interventions may have

a significant effect on slowing the rate of spread and reducing the

final attack rate of an influenza pandemic in a small developed

world community. These results hold for all reproduction numbers

considered but are more effective for the lower numbers. Our

model further suggests that for R0 = 2.5 a local epidemic may be

prevented by the use of non-pharmaceutical measures alone,

provided that activation of measures is rapid and sustained. While

we acknowledge that the long-term enforcement of disruptive non-

pharmaceutical interventions is not socially feasible, our results

suggest that they have a key role to play, slowing the rate of growth

of the pandemic until vaccination or antiviral drugs become

available. Furthermore, many countries may not have access to a

pandemic vaccine or to antiviral drugs, and if antiviral drugs are

used a pandemic virus may rapidly become resistant [27–30],

further highlighting the importance of non-pharmaceutical

interventions.

Comparison of the baseline pandemic and the effect of
school closure simulations

Several previous studies [7–11] have used individual-based

models to simulate the spread of influenza. By comparing the

models (including our own), several conclusions can be drawn.

Final infection rates, in the absence of any interventions, are

similar in all models across a range of R0 values. This is true

despite the fact that the models were constructed from a variety of

data sources and took different approaches to building the

simulated population and its implicit contact network. For

epidemics with R0 values greater than 2.0, no single social

distancing measure is effective in preventing a local epidemic.

For R0 in the range 1.5 to 2.0, different models make quite

different predictions about the effectiveness of social distancing

measures. The most commonly modelled and clearly comparable

intervention is school closure. The effect of school closure as a sole

intervention measure shows final infection rates ranging from

1.5% to 48% for R0 in the range 1.5–1.7. Given the similarity in

modelled infection rates in the various individual based models in

the absence of interventions, the difference in the effect of school

closure appears to be related to the differences in assumptions

about the contact behaviour of pupils during periods of school

closure (an observation also made by Haber et al in [31]). For

instance, the study by Germann et al [10] assumed that no

additional contact occurred, and found school closure highly

effective at R0 = 1.6, with a simulated final infection rate 1.5%.

Our study (R0 = 1.5) assumed that additional household contact

would occur and found that school closure would be moderately

effective, reducing infection rate to 16%. The study by Ferguson et

al [8] assumed that both household and community contact would

increase and found that school closure for an R0 = 1.7 would only

be marginally effective. The Glass et al study [11] supports the

hypothesis that simulated school closure effectiveness is related to

assumptions about mixing. For an R0 of 1.6, a scenario where

pupils continued to contact their friends during school closure

found such closure to be marginally effective (reducing infection

rate to 41%), while a scenario in which this mixing did not occur

resulted in school closure being highly effective (final infection rate

4%).

An alternative (or compounding) explanation for the variation

in simulated effectiveness of school closure is the different

assumptions regarding the timing of its introduction. The

Ferguson et al [8] scenario, where individual schools close at the

appearance of the first symptomatic case in the school, may result

in closure occurring significantly later than the closure scenarios

used in the other studies, all of which assume that all schools in a

community close before cumulative symptomatic cases in a

community reach approximately 10 cases per 10,000.

Table 3. Summary of Simulated Effectiveness of School Closure.

Low R0 Higher R0 School Closure Assumptions

R0 IR / IR with School Closure R0 IR / IR with School Closure

Ferguson 2006 1.7 54 / 48 2.0 68 / 64 Individual schools close for 3 weeks upon
detection of case in school (schools can close
multiple times); 10% workplace closure, additional
household contact; increased household (50%)
and community (25%) contact.

Germann 2006 1.6 48 / 1.5 1.9 65 / 44 Simultaneous and continuous school closure at
10,000 (29 or 24 days) cases plus 7 days; no
additional contact.

Glass 2006 1.6 51 / 41 (4) 2.0 75 / 73 (50) 90% school closure compliance after 10
community cases. School closure infection rate
given assuming additional contact and no
additional contact in parenthesis.

Milne 2008 1.5 41 / 16 2.0 67 / 55 Schools close pre-emptively; additional household
contact; adult required to supervise children in
household.

Simulated effects of school closure on final infection rate for four individual-based influenza epidemic models. For each model results are given for moderate (R#1.7)
and severe (R$1.9) epidemics. Each model’s assumptions about the timing of the imposition of school closure and changes in mixing behaviour are summarised.
Abbreviations: IR = Infection Rate.
doi:10.1371/journal.pone.0004005.t003

Comparison of School Closure
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The stochastic modelling study described in [5] found that a

comparison of attack rates between adults and children provided a

good indication of the likely benefits of closing schools. In our

sensitivity analysis (reported in Supporting Information Text S2)

we found that an age-specific attack rate profile similar to the 1968

pandemic (where children had much the same attack rate as other

age groups, rather than having a higher attack rate) did indeed

reduce the effectiveness of school closure. However, we also found

that altering assumptions about the size of school class mixing

groups or the amount of community contact occurring also

resulted in changes to the effectiveness of school closure, even

when age-specific attack rates were the same.

This apparent lack of consensus highlights the sensitivity of

individual-based models to the details of interpersonal contact and

individual behavioural patterns, and suggests that obtaining

reliable estimates of these parameters should be a priority. All

the models suggest that decisions on school closure options,

including when and for how long to close schools, will also have a

major effect on the final infection rate in a community.

The results of our model, and of most of the other individual

based models, are applicable to industrialised populations and may

not be applicable to developing countries with lower population

mobility and higher population densities. However, we have

shown that published individual based models of developed world

communities estimate similar final attack rates in a pandemic

where no interventions have been implemented; that multiple

social distancing measures applied early and continuously can be

very effective in interrupting transmission of the pandemic virus

for R0 values up to 2.5; and that different conclusions reached on

the simulated benefit of school closure probably result from

differences in assumptions about the timing and duration of school

closure and flow-on effects on other social contacts resulting from

school closure.
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