
The Impact of Case Diagnosis Coverage and Diagnosis
Delays on the Effectiveness of Antiviral Strategies in
Mitigating Pandemic Influenza A/H1N1 2009
Joel K. Kelso*, Nilimesh Halder, George J. Milne

School of Computer Science and Software Engineering, University of Western Australia, Crawley, Australia

Abstract

Background: Neuraminidase inhibitors were used to reduce the transmission of pandemic influenza A/H1N1 2009 at the
early stages of the 2009/2010 pandemic. Policies for diagnosis of influenza for the purposes of antiviral intervention differed
markedly between and within countries, leading to differences in the timing and scale of antiviral usage.

Methodology/Principal Findings: The impact of the percentage of symptomatic infected individuals who were diagnosed,
and of delays to diagnosis, for three antiviral intervention strategies (each with and without school closure) were
determined using a simulation model of an Australian community. Epidemic characteristics were based on actual data from
the A/H1N1 2009 pandemic including reproduction number, serial interval and age-specific infection rate profile. In the
absence of intervention an illness attack rate (AR) of 24.5% was determined from an estimated R0 of 1.5; this was reduced to
21%, 16.5% or 13% by treatment-only, treatment plus household prophylaxis, or treatment plus household plus extended
prophylaxis antiviral interventions respectively, assuming that diagnosis occurred 24 hours after symptoms arose and that
50% of symptomatic cases were diagnosed. If diagnosis occurred without delay, ARs decreased to 17%, 12.2% or 8.8%
respectively. If 90% of symptomatic cases were diagnosed (with a 24 hour delay), ARs decreased to 17.8%, 11.1% and 7.6%,
respectively.

Conclusion: The ability to rapidly diagnose symptomatic cases and to diagnose a high proportion of cases was shown to
improve the effectiveness of all three antiviral strategies. For epidemics with R0, = 1.5 our results suggest that when the
case diagnosis coverage exceeds ,70% the size of the antiviral stockpile required to implement the extended prophylactic
strategy decreases. The addition of at least four weeks of school closure was found to further reduce cumulative and peak
attack rates and the size of the required antiviral stockpile.
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Introduction

Treatment and prophylaxis with antiviral drugs is a core

strategy in the influenza pandemic preparedness plans of many

countries [1,2,3] and was utilized for the first time during the 2009

A/H1N1 pandemic [4].

The efficacy of antiviral drugs for treatment and prophylaxis has

been demonstrated in trials, as analysed in [5]. In addition to

reducing the severity and duration of symptoms [6], neuraminidase

inhibitors also reduce both infectiousness of treated individuals and

susceptibility of exposed individuals undergoing prophylaxis [5],

preventing secondary transmission and thus potentially reducing the

impact of the epidemic. Modelling studies oriented to H5N1 have

been used to determine their effectiveness in reducing illness attack

rates; examples include reducing illness amongst health care

workers [7,8] and in the wider community [9,10,11,12,13].

We have expanded on previous modelling studies by simulating,

in detail, the effect of several key aspects of antiviral interventions.

These include the effect of delaying diagnosis and the ratio of diagnosed

to undiagnosed symptomatic cases, as well as the subsequent antiviral

treatment and (possible) prophylaxis. We simulated epidemics in a

community of 30,000 individuals, basing the characteristics of the

influenza strain on those of the 2009 pandemic as estimated from

actual pandemic data including reproduction number [14,15,16,

17,18], serial interval [14,15], and age-specific attack rate profile

[19].

The 2009 A/H1N1 pandemic revealed that strategies for using

antiviral drugs differed markedly between and within countries

[4]. One of these differences was whether antiviral drugs were used

solely for treatment or also for prophylaxis. Prophylaxis strategies

also differed in terms of the extent of the contact group at which

the prophylaxis was targeted; that is, whether it was household

members only or whether it was extended to include workplace or

school contacts. The decision to use antivirals in a prophylactic

capacity (and if so, how extensively) will clearly determine both the

population-level effect of the intervention and the magnitude of

the antiviral resources needed. We simulated three increasing

scales of antiviral usage: treatment only, treatment plus household

prophylaxis, and treatment plus household prophylaxis plus

prophylaxis of workplace or school class contacts.
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Another difference in the application of antiviral drugs involved

the methods used to determine who should receive treatment, and

as a consequence who should also receive prophylaxis. Some

countries (e.g. some states in Australia) initially required laboratory

testing before initiation of a treatment regime (and the possible

prophylaxis of a contact group), while others only required

diagnosis of an influenza-like illness (ILI) by a medical practitioner.

In other countries (e.g. the United Kingdom) diagnosis could be

conducted over the telephone by a health-care worker with

immediate authority for the prescription of antiviral drugs.

Assuming that infected individuals seek medical attention upon

the development of symptoms, the diagnosis procedure adopted is

a key determiner of the time delay between symptom onset and

initiation of treatment (and possible prophylaxis). Since viral

shedding in an infected person occurs around the time of peak

symptoms [20], diagnosis delay will strongly influence the

effectiveness of antivirals in interruption of transmission. We

simulated diagnosis delays ranging from immediate (less than

6 hours), which might be possible in the case of the telephone

system described above, to 48 hours after symptoms appearing,

which might be a plausible (though unlikely) turn-around time for

a heavily loaded testing laboratory.

In addition to variations in these operational aspects of antiviral

delivery, a key observation of the 2009 pandemic was the

difficultly in ascertaining all the cases, and therefore the proportion

of infected cases to which antiviral interventions were being

applied (which we refer to as the diagnosis coverage). We

simulated such diagnosis coverages ranging form 10% through

to 100%.

As school closures were a common adjunct to antiviral

intervention policies, we also simulated all antiviral interventions

with and without concurrent school closures.

In the case of a newly emerged and highly virulent influenza

strain, a key aim of public health policy will be to contain infection

spread – that is, reduce the rate of new infections to a very low

level – either to prevent an epidemic or to buy time for a vaccine

to be developed and distributed. Current pandemic planning calls

for antiviral drugs to be used as part of such a containment

response, so understanding the effects of operational issues

pertaining to planned antiviral interventions is vital. Our

simulation experiments allowed us to quantify reductions in the

overall illness attack rate and in the maximum daily case load

under a range of diagnosis delays and diagnosis coverages for both

treatment-only and treatment plus prophylaxis strategies. Detailed

examination of these factors also permits us to establish how these

two diagnosis criteria impact on the required size of an antiviral

stockpile.

Methods

Simulation Model
We used an individual-based model of a real community in

Western Australia (Albany) with a population of approximately

30,000 to simulate the dynamics of the 2009 influenza pandemic.

We used census, state and local government data to construct a

human contact network involving households, schools, childcare

centres, workplaces and a regional hospital. The simulation period

was divided into 12 hour day/night cycles; during each cycle the

nominal location of every person was determined, and individuals

occupying the same location were assumed to come into potential

infective contact. In addition, community interaction was

modelled by assuming that active individuals would contact other

active individuals each day, with contact being random but biased

towards contact between people with nearby home locations.

This model was previously developed to determine the

effectiveness of social distancing and vaccination measures for a

possible future H5N1 pandemic [21,22,23], and was subsequently

used to examine antiviral and school closure interventions that

were employed in the A/H1N1 2009 pandemic [13]. We have

further refined this model to include the ability to simulate

diagnosis delays and coverages, and to reflect the biology of the A/

H1N1 2009 influenza strain according to information available in

early 2010.

Transmission of infection between infectious and susceptible

individuals who came into infective contact was resolved

stochastically. The probability of transmission was calculated as

a function of the state of the infectious (Ii) and susceptible (Is)

individuals involved at the time of contact, as given by:

Ptransmission Ii,Isð Þ~b � Susc Isð Þ � Trans Iið Þ � 1{AVEs Isð Þð Þ�

1{AVEi Iið Þð Þ

Each factor contributing to the transmission probability is

described below. The basic transmission probability (b), capturing

the infectivity of the virus strain, was chosen to give an unmitigated

epidemic with a reproduction number R0 of 1.5. We also

determined alternative basic transmission probabilities that gave

epidemics with R0 values of 1.2, 2.0 and 2.5 – the rationale for

selecting these values is presented in the Discussion section.

To achieve a realistic age specific infection rate, age-specific

susceptibility parameters (the function Susc appearing above) were

calibrated to achieve an age-specific attack rate similar to that of

the A/H1N1 2009 pandemic. This was achieved using the

following procedure. Using the age distribution of cases reported

to the EDCD [19] (based on European Union influenza

surveillance data for the period April to September 2009) and

the age demographics of the Albany model (which are similar to

those of Europe), we calculated an age-specific attack rate profile.

We then determined transmission probability susceptibility

parameter values (Susc) for each age group in order to give an

epidemic that matched this attack rate profile. The basic virus

transmission probability parameter was then adjusted (keeping

age-specific susceptibilities constant) to produce epidemics with

target reproduction numbers, as described above.

In order to determine if this assumption has an important

influence on the effectiveness of antiviral strategies, we repeated

our simulations with an alternative set of age-specific susceptibility

parameters that gave rise to age-specific attack rates similar to

those of seasonal influenza (parameters were calibrated to serologic

infection rates reported for H3N2 in 1977–1978 in Tecumseh,

Michigan [24]). The main difference between the two age-specific

attack rate profiles is the greater numbers of cases in the 12–24 age

group for A/H1N1 2009, but fewer cases in older age groups,

compared to seasonal influenza. The age-specific infection rate

profiles used to determine age-specific susceptibilities for the two

different assumptions are shown in Figure 1.

Infected individuals were fully infectious (i.e. Trans(Ii) = 1.0)

from 36 hours after infection (when symptoms were deemed to

appear) to 84 hours after infection; and less (half) as infectious for

the rest of the infectivity period (i.e. Trans(Ii) = 0.5), which began

12 hours after infection and finished 6 days after infection. This

timeline of the progression of individual infection (which we refer

to as the infectivity profile), in conjunction with other the simulation

parameters and the structure of mixing groups, results in a mean

serial interval of 2.3 days (standard deviation 1.6 days), which was

consistent with the A/H1N1 2009 pandemic as estimated in

[14,15]. The serial interval was calculated by determining the time

between the event when an individual became infected, and

Diagnosis for Antivirals
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subsequent infection event due to that individual infecting another,

averaged over all infected individuals during a simulation run.

The peaked infectivity profile described above is an approxi-

mation of the viral shedding distribution documented in [20]. In

order to examine the sensitivity of our results to this choice of

infectivity profile we conducted an analysis using 4 additional

alternative infectivity profiles. For each alternative infectivity

profile, a corresponding b (basic transmission probability) value

was determined so that the resulting no-intervention epidemics all

had an R0 value of 1.5, and the simulation experiment series was

repeated. The full details of the alternative infectivity profiles are

given in Supporting Information Text S1. Although there is

evidence that infectiousness (as well a susceptibility) is age-specific,

we have not included this effect in our model.

We assumed that 32% of infected adults (20% of children)

would experience asymptomatic infection [25], and that 50% of

symptomatic adults (90% of children) would isolate themselves in

their household for the duration of their infection. In the baseline

epidemic, this leads overall to 23% of infections being asymptom-

atic, which is consistent with an estimate for the 2009 A/H1N1

pandemic of 22% [26]. We assumed that an average of one new

infection per day was stochastically introduced into the population

during the whole period of the simulations.

As with earlier work other parameter values such as community

contact rates and school class sizes were selected to give plausible

values for in-household versus out-of-household transmission [21].

Antiviral Efficacy
We assumed that the probability of infection transmission

during an infectious contact was reduced by 66% if the infected

individual was undergoing antiviral treatment (i.e. AVEi(Ii) = 0.66)

[5,27], and that treated individuals experienced a 1-day reduction

in illness duration [28]. During cycles in which antiviral treatment

is not in effect, which could be because no antiviral treatment

strategy was being simulated, or the individual was not

symptomatic, or was not diagnosed, or treatment had not yet

begun due to diagnosis delay, AVEi(Ii) was set to 0.

Note that in the case that an individual became infected while

undergoing antiviral prophylaxis but did not receive treatment,

either because they experienced asymptomatic infection, or

because they were not diagnosed (see Diagnosis Delay and

Coverage below), the same AVEi reduction in infectiousness was

applied during the prophylaxis period.

Similarly, the transmission probability was reduced by 85% if

the susceptible individual was undergoing antiviral prophylaxis

(i.e. AVEs(Is) = 0.85) [6], and were 50% less likely to experience

symptomatic illness if they did become infected [28]. For

individuals not undergoing treatment or prophylaxis, the respec-

tive AVEi and AVEs parameters were set to 1.0.

We further examined the possibility that the efficacy of reducing

infectivity is dramatically reduced if treatment is delayed by

conducting a sensitivity analysis with the alternate assumption that

AVEi declined exponentially with the length of time between

symptoms developing and AV administration, with AVEi reduced

by one half for each 24 hour delay. Figures illustrating the action

of AVEi for various diagnosis delays are contained in Supporting

Information Text S1

Antiviral Strategies
We analysed three different antiviral intervention strategies that

were used (variously) in Australia, the United Kingdom and the

USA during the early stages of the 2009 influenza pandemic.

These strategies were:

1. Treatment-only (T): Diagnosed individuals received antiviral

drug treatment.

2. Household prophylaxis (T+H): Diagnosed individuals received

antiviral treatment and all household members were given

antiviral drugs for prophylaxis.

3. Extended prophylaxis (T+H+E): Here the prophylactic use of

antiviral drugs was extended to a wider group of contacts, with

prophylaxis given to class members (if the diagnosed person is

school pupil or teacher) or to workplace contacts (if the case

was diagnosed in a workplace location), in addition to their

household members.

Antiviral treatment involved diagnosed individuals receiving two

doses taken daily for 5 days; antiviral prophylaxis consisted of one

dose taken daily for 10 days.

Note that by ‘‘diagnosis’’ we do not necessarily mean laboratory

confirmed diagnosis; merely that an individual sought medical

attention and a decision to administer antivirals was made. Note

Figure 1. Age-specific infection rate profiles for seasonal and A/H1N1 2009 influenza used to calibrate age-specific susceptibility.
The proportion of each age group infected in a baseline (unmitigated) epidemic is shown for seasonal influenza and for A/H1N1 2009. In both cases
age demographics are those of the Albany model, and final infection rates are 17% (corresponding to a 13% final illness attack rate).
doi:10.1371/journal.pone.0013797.g001
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that for the prophylaxis scenarios, we assumed that an individual

who became infected (and was diagnosed) during prophylaxis

would switch to a new full-length antiviral treatment course. We

also assumed that a person would receive at most two prophylactic

courses; and that they would not receive prophylaxis if they had

previously experienced symptomatic infection.

School Closure
For each of these strategies, we simulated epidemics with and

without school closure (SC). We assumed that closure of each

school was triggered following diagnosis of two cases in the school,

whereupon the school was closed for two weeks, with each school

closing on at most two occasions for a maximum total of 4 weeks.

School closures were applied to primary and secondary schools but

not to childcare facilities or adult education institutions. We

assumed that teachers and pupils affected by school closure would

not attend their regular school hub during the daytime cycle but

instead dwelt at home, coming into contact with other individuals

present in the household. Individuals so affected were assumed to

make their usual community contacts at during the day, but made

no additional (compensatory) contacts.

Diagnosis Delay and Coverage
We simulated diagnosis coverages, that is, the percentage of those

who experience symptomatic infection who are actually diag-

nosed, ranging from 10% through to 100% in 10% increments.

We define the diagnosis delay to be the period from when an

individual first experiences symptoms to the time when they receives

antivirals. We assumed that antiviral treatment or prophylaxis

began at the time diagnosis was made. We simulated diagnosis

delays ranging from immediate (less than 6 hours after the

appearance of symptoms) up to 48 hours, in 12 hour increments.

We assumed that the actual time of diagnosis relative to the time

of infection or symptom onset may be caused by a variety of

factors; delay in individuals seeking medical attention, access to

health care facilities, delay in laboratory diagnosis, or availability

of antiviral drugs.

Results

In the absence of interventions our simulated baseline epidemic

had an R0 of 1.5, a final attack rate (AR) of 24.5%, and a serial

interval of 2.32 days. Additional epidemic characteristics, and

characteristics for alternate baseline epidemics with R0 values of 1.2,

2.0, and 2.5 can be found in Supporting Information Table S1. The

rationale for selecting these values is presented in the Discussion

section. Results for all simulated epidemics were determined from

the average of 40 individual simulation runs, each with stochastic

choices made using a different random number sequence.

Several patterns of results held across all intervention scenarios.

Greater prophylactic use of antivirals always resulted in greater

reductions in AR: strategy T+H+E was better than T+H which in

turn was better than T (see Figure 2A and Figure 3A).

The pattern of peak daily incidence reductions was the same as

for final AR reductions, with daily incidence reductions being

proportionally larger than final AR reductions (see Figures 2B and

3B).

The addition of 4 weeks school closure to any antiviral strategy

consistently gave an additional decrease in antiviral usage, AR,

and peak daily incidence.

Impact of Diagnosis Delay
We simulated a range of diagnosis delays from zero to 48 hours,

assuming a 50% diagnosis coverage. Results for the three antiviral

drug strategies, with and without 4 weeks of school closure, are

shown in Figure 2. Figure 2A shows that delaying antiviral

treatment (and related prophylaxis if used) resulted in an

approximately linear increase in AR for all strategies.

For the best antiviral strategy (T+H+E) the AR ranged from

8.8% with prompt diagnosis (no delay between symptom

appearance and antiviral administration) to 15.4% with a 48 hour

delay; for the T strategy the AR increased from 17.4.0% to 22.4%

over the same range of delays.

Assuming zero-delay diagnosis, a further 3.9%, 3.5% or 2.1%

reduction in the final attack rate resulted from the addition of 4 weeks

of school closure to the T, T+H and T+H+E strategies respectively.

The additional reduction in attack rate due to school closure is very

similar for diagnosis delays ranging from 0 to 48 hours.

The peak daily incidence is also reduced by prompt usage of

antiviral drugs. If there is no delay between symptom appearance

and diagnosis the maximum number of symptomatic cases per day

is reduced by 46 (109 to 63), 76 (109 to 33) and 89 (109 to 20) per

10,000 population using the T, T+H and T+H+E strategies

respectively. The addition of school closure can avoid a further 34,

17 and 8 cases per 10,000 of the population respectively. If

antiviral treatment and prophylaxis were started 24 or 48 hours

post symptom appearance, all strategies are less effective in

reducing the peak daily incidence, with treatment-only being

affected most adversely, as shown Figure 2B. Figure 4 shows daily

incidence epidemic curves for various intervention strategies and

diagnosis delays. The characteristic ‘‘double hump’’ appearing in

the school closure epidemic curves is due to schools re-opening

after their maximum 4 weeks of school closure, and the subsequent

acceleration of the epidemic at that point. This indicates that the

school closure component of the modelled interventions could be

more effective if optimally timed (this phenomena is considered

further in the Discussion section).

Impact of Diagnosis Coverage
A range of diagnosis coverages for each of the three antiviral drug

strategies were analysed using a realistic diagnosis delay of 24 hours.

As might be expected, our results indicate that a higher case diagnosis

coverage will reduce the final illness attack rate and the peak daily

incidence, as shown in Figures 3A and 3B. With a minimum

diagnosis coverage of 10% none of the antiviral drug strategies can

contain the epidemic i.e. reduce the illness attack rate to less than

10% of the population. The final attack rates are 23.8%, 22.9% and

20.8% (compared to the unmitigated attack rate of 24.5%), and the

peak daily incidence rates are 104, 95 and 84 per 10,000 (compared

to the unmitigated value of 109) following administration of the T,

T+H and T+H+E strategies respectively. With a 50% diagnosis

coverage the attack rates are 21.0% (down 3.5% from 24.5%), 16.5%

(down 8.1%) and 13.0% (down 16.4%) respectively. Adding school

closure reduced the attack rate further, to 17.1%, 13.0% and 10.7%

respectively, showing the benefit of this layered approach. Figure 5

shows daily incidence epidemic curves for various intervention

strategies and diagnosis delays. We summarize the impact of different

diagnosis delays and diagnosis coverages on the overall illness attack

rate and the peak daily incidence in Table 1.

Impact on Required Number of Antiviral Courses
For all intervention scenarios we found that wider prophylactic

use of antivirals resulted in greater numbers of antiviral courses

used, with the T+H+E strategy using the most and T using the

least. We also found that the addition of school closure to any

strategy always resulted in the use of fewer courses.

Figure 2C shows that longer diagnosis delays resulted in greater

antiviral usage, with the effect being largest for the prophylaxis

Diagnosis for Antivirals
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strategies. For the T+H+E+SC strategy, the required number of

antiviral courses ranged from 21.4% with zero delay to 33.3%

with a 48 hour delay; for the T+SC strategy the number of courses

required varied from 6.7% to 9.0% over the same range of delay.

As shown in Figure 3C, the effect of diagnosis coverage on the

required number of antiviral courses differed qualitatively between

the treatment-only and prophylaxis strategies. For T+SC the

number of doses required increases linearly with diagnosis

coverage, from 1.8% with a diagnosis coverage of 10% to

13.7% with a diagnosis coverage of 100%. For T+H+E+SC the

number of courses required increases rapidly to a peak of 30.1% at

a diagnosis coverage of 60%; beyond this diagnosis coverage

threshold the number of courses required falls, reaching 26.6% at

a diagnosis coverage of 100%. For T+H+SC the number of

required courses increases more slowly than T+H+E+SC but more

rapidly than T+SC, up to a plateau at a diagnosis coverage of

80%, with a fall from 19.6% at a diagnosis coverage of 80% to

17.7% at a diagnosis coverage of 100%.

Sensitivity to Reproduction Number
Our results reported above assume an influenza epidemic with a

basic reproduction number of 1.5. In order to determine the

sensitivity of these results to alternate R0 assumptions, we repeated

our analysis of the effect of diagnosis delays and coverages for

epidemics with R0 values of 1.2, 2.0 and 2.5. Results of these

simulations can be found in Supporting Information Figures S1

and Figure S2; we describe the most significant outcomes below.

As might be expected, higher R0 values resulted in higher attack

rates and less effective antiviral interventions in proportion to

attack rate. Table 2 shows the outcome of each antiviral

intervention strategy (with and without school closure) for a range

of R0 values. These results assume a diagnosis delay of 24 hours

and a diagnosis coverage of 50%. For all strategies, increasing R0

causes higher final attack rates, higher peak daily incidence and

increased antiviral use.

We found that in terms of diagnosis delay, epidemics of all

reproduction numbers followed the same pattern: lowest attack rates

and antiviral usage occurred with zero delay, and attack rates and

antiviral usage increased essentially linearly with diagnosis delay, up

to 48 hours delay. The actual sensitivity to diagnosis delays (that is,

the degree to which antiviral effectiveness degraded with increasing

delay) depended upon the strategy and R0. The degradation in final

attacks is shown in Table 3; values ranged from 0.49–1.67 percent

per 12 hours delay. We found that for R0. = 2.0, the antiviral usage

became insensitive to the diagnosis delay.

We also found that for the alternate R0 scenarios the final attack

rates and peak daily incidence varied according to diagnosis

coverages in a pattern similar to the R0 = 1.5 results.

Figure 2. Outcome of six antiviral intervention strategies as a function of diagnosis delay. Three outcomes are reported: (A) cumulative
illness attack rate, (B) peak daily incidence (per 10,000 population), and (C) number of antiviral courses used as a percentage of the population size.
We assumed that antiviral treatment or prophylaxis began at the time diagnosis was made and that 50% of symptomatic cases would be diagnosed.
doi:10.1371/journal.pone.0013797.g002
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Since both R0 and diagnosis coverages are difficult to estimate

with a high degree of certainty, one important statistic is an upper

bound on the number of antiviral courses needed to implement a

particular intervention strategy. Table 4 gives, for each R0 value

simulated, the maximum antiviral stockpile needed over all diagnosis

coverages, and also the diagnosis coverage for which the maximum

occurs. It can be seen that for the treatment-only intervention, or for

R0 . = 2.0, maximum antiviral usage occurs for a diagnosis

coverage of 100% (i.e. increasing diagnosis coverage always require

more antivirals); but for prophylaxis strategies at lower R0 values

maximum antiviral usage plateaus at an intermediate value.

Sensitivity to Age-Specific Attack Rate
As described in the Methods section above, we assumed that the

individual age-specific susceptibility to infection was related to the

age-specific attack rate (ASAR) of a baseline (unmitigated)

epidemic as observed with the 2009 pandemic. In order to

determine the effect of this assumption on the effectiveness of

antiviral strategies, we repeated our simulations with an alternative

set of parameters that gave rise to ASARs similar to those of

seasonal influenza [24].

Antiviral diagnosis delay and coverage results based on the

seasonal influenza age-specific attack rate assumption can be found

in Supporting Information Table S2. Quantitatively, we found that

the seasonal ASAR gave higher attack rates than the A/H1N1 2009

ASAR. For example, with R0 = 1.5 the baseline (no intervention)

final attack rate was 32.5% and the peak daily incidence was 121

per 10,000 compared to 24.5% and 109 per 10,000 for the latter.

Although the baseline attack rates were higher, antiviral interven-

tions gave higher proportional reductions for the seasonal ASAR

assumption. In some cases the prophylaxis strategies reduced attack

rates to a level lower than for the A/H1N1 2009 ASAR assumption,

despite starting from a higher baseline.

Qualitatively, the effects of antiviral interventions and sensitivity

to diagnosis delays and coverages were similar between the two

ASAR assumptions: increasing diagnosis delays and diagnosis

coverages led to the same patterns of increase in final attack rates,

peak daily incidence and antiviral usage.

Sensitivity to Reduced AVEi Due to Delayed Treatment
An assumption that AVEi is dramatically reduced as a

consequence of delayed treatment resulted in only a small

additional loss of antiviral effectiveness; approximately 1%

increase in the final attack rate. For example, the T+H+E strategy

gives a final attack rate of 8.8% assuming the ideal case of there

being no delay between symptoms and antiviral treatment.

Figure 3. Outcome of six antiviral intervention strategies as a function of diagnosis coverage. Three outcomes are reported: (A)
cumulative illness attack rate, (B) peak daily incidence (per 10,000 population), and (C) number of antiviral courses used as a percentage of the
population size. We simulated percentages of symptomatic individuals being diagnosed ranging from 10% to 100% in 10% increments. We assumed
that the delay between symptoms appearing and antiviral treatment or treatment plus prophylaxis was 24 hours.
doi:10.1371/journal.pone.0013797.g003
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Assuming constant AVEi of 66%, 24 and 48 hour delays give final

attack rates of 13.0% and 15.4% respectively; if AVEi is assumed

to halve in efficacy with every additional 24 hour delay, the

corresponding final attack rates are 14.0% and 16.1% respectively.

Full results of the diagnosis delay experiments with the declining

AVEi assumption are given in Support Information Text S1.

Sensitivity to Infectivity Curve and Serial Interval
We conducted an analysis to determine the sensitivity of our

results to the individual infectivity profile – that is, the degree to

which an infected individual is infectious as a function of time since

infection – by repeating our experiments with 4 additional

alternative infectivity profiles. Here we report on the results for an

alternative infectivity profile that differs from that used in the main

results in that the period of maximum infectivity is earlier (beginning

24 rather than 36 hours after infection) and briefer (lasting 36 rather

than 48 hours), and for which the maximum level of infectivity is

higher relative to the level of infectivity assumed for asymptomatic

or post peak infection (being 4 times higher rather than twice as

high). Full details and simulation results for all alternative infectivity

profiles are reported in Supporting Information Text S1.

The epidemic outcomes for the alternative, more peaked (i.e.

having higher hurtosis) infectivity profile exhibited three notable

features that contrasted with that of the original infectivity profile.

Firstly the peaked infectivity profile resulted in a shorter serial

interval of 1.85 days (standard deviation 0.762 days), compared to

2.31 days (standard deviation 2.88 days) for the original infectivity

profile.

Secondly, although parameters for both infectivity profiles were

calibrated to give unmitigated epidemics with an R0 of 1.5, the

final attack rate for the peaked infectivity profile was lower (21.3%)

than for the original profile (24.5%).

Thirdly, the peaked infectivity profiles result in greater

sensitivity to delay in antiviral treatment, particularly over the

first 12 hours after symptom appearance. For example, for the

T+H antiviral strategy with the peaked infectivity profile, diagnosis

delays of 0, 12 or 24 hours resulted in final attack rates of 6.9%,

11.7% or 13.3%, compared to 12.2%, 14.1% or 16.5% for the

same delays for the original profile.

Discussion

Neuraminidase inhibitors were used in the context of an

influenza pandemic for the first time in 2009. Prompted by the

observation that a variety of different criteria for distributing

antivirals were used in different countries and at different times

[4], we evaluated the impact on attack rate reductions arising from

delays to diagnosis, and hence the initiation of antiviral use for

both treatment and prophylaxis. We also evaluated the impact of

Figure 4. Daily incidence epidemic curves for various delays in antiviral treatment and/or prophylaxis. Interventions are abbreviated as
follows: treatment only (T), household prophylaxis (H), extended prophylaxis (E), 4 weeks school closure (SC). We assumed that 50% of symptomatic
cases would be diagnosed. Schools were assumed to close upon the diagnosis of 3 cases in the school for a period of two weeks. Each school closed
a maximum of 2 times for a total of 4 weeks.
doi:10.1371/journal.pone.0013797.g004

Diagnosis for Antivirals

PLoS ONE | www.plosone.org 7 November 2010 | Volume 5 | Issue 11 | e13797



varying the percentage of infected individuals who were

diagnosed, the diagnosis coverage. Use of actual data from the

2009 pandemic allowed us to investigate these operational details

of antiviral interventions in the context of simulated epidemics that

matched the A/H1N1 2009 pandemic strain in terms of

reproduction number, serial interval and age-specific attack rate

profile. We also simulated all antiviral interventions with and

without concurrent school closure, as the combination of school

Figure 5. Daily incidence epidemic curves for various diagnosis coverages. Interventions are abbreviated as follows: treatment only (T),
household prophylaxis (H), extended prophylaxis (E), 4 weeks school closure (SC). We assumed that the delay between symptoms appearing and
antiviral treatment or treatment plus prophylaxis was 24 hours. Schools were assumed to close upon the diagnosis of 3 cases in the school for a
period of two weeks. Each school closed a maximum of 2 times for a total of 4 weeks.
doi:10.1371/journal.pone.0013797.g005

Table 1. Outcome of antiviral epidemic measures with various diagnosis delays and coverages.

final symptomatic attack rate (%) peak daily incidence (per 10,000)

baseline 24.5 109

intervention strategy diagnosis delay diagnosis coverage diagnosis delay diagnosis coverage

0 h 24 h 48 h 10% 50% 90% 0 h 24 h 48 h 10% 50% 90%

T 17.4 21.0 22.4 23.8 21.0 17.8 63 84 96 104 84 68

T+SC 13.6 17.1 18.2 18.4 17.1 14.5 29 39 41 48 39 35

T+H 12.2 16.5 18.4 22.9 16.5 11.1 33 56 69 95 56 30

T+H+SC 8.7 13.0 15.0 17.6 13.0 7.8 16 27 31 43 27 15

T+H+E 8.8 13.0 15.4 20.8 13.0 7.6 20 34 47 84 34 17

T+H+E+SC 6.7 10.7 13.4 16.8 10.7 6.1 12 19 26 39 19 12

Final symptomatic attack rate (as % of population) and peak daily symptomatic incidence (per 10,000) are given for different intervention strategies, diagnosis delays
and diagnosis coverages. Intervention strategies are abbreviated as follows: T – antiviral treatment of diagnosed cases, H – prophylaxis of household of diagnosed cases,
E – prophylaxis of school or work contacts of diagnosed cases, SC – four weeks of school closure. Where diagnosis delay differs from 24 hours, diagnosis coverage is
50%; where diagnosis coverage differs from 50%, diagnosis delay is 24 hours.
doi:10.1371/journal.pone.0013797.t001
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with antivirals was used in many locations during the 2009

pandemic and would undoubtedly be used in the future upon the

occurrence of a more pathogenic influenza pandemic.

Delaying administration of antiviral treatment and prophylaxis

is predicted to result in higher AR and require a larger stockpile of

antiviral drugs. Evidence shows that viral shedding (presumed to

correlate with infectivity) peaks shortly after the peak in symptoms

[20]; delay between symptoms appearing and the beginning of

antiviral treatment and prophylaxis thus coincides this period of

maximum infectivity. Our results show that a slower, more

accurate diagnosis procedure, such as PCR testing, that can

distinguish pandemic influenza from other influenza-like illnesses

(ILI) is not guaranteed to make better use of an antiviral stockpile;

this depends on both the rapidity of diagnosis (the effect of which

we quantify) and the prevalence of non-pandemic influenza ILI.

The influence of antivirals prescribed for false-positive ILI

diagnosis is not simple to predict. Such antiviral usage may have

a prophylactic effect, protecting against co-infection with pan-

demic influenza. If the ILI causing false-positive diagnosis is

another influenza strain, antiviral usage may influence the

dynamics of this non-pandemic influenza, changing the prevalence

of non-pandemic ILI.

An additional point is that while treatment (and possibly

household prophylaxis) may be possible via a rapid-diagnosis

scheme, this is not the case for extended prophylaxis where contact

tracing is necessary: even if contact tracing were to be initiated

immediately on symptom appearance, there might be a 24- or 48-

hour delay in finding and distributing antivirals to school or

workplace contacts. However, since our results show that extended

prophylaxis is more effective than treatment-only by a consider-

able margin, adding prophylaxis, even if delayed, should

substantially improve the outcome.

The proportion of symptomatic individuals diagnosed strongly

impacts the effectiveness of all strategies. We found that increasing

the diagnosis coverage resulted in essentially linear corresponding

decreases in the final attack rate. Large decreases in peak daily

incidence were possible by relatively small increases in diagnosis

coverage from 10%: halving the no-intervention peak daily

incidence (from 109 per 10,000) could be achieved by diagnosis

coverages of 50% or 30% from the household and extended

prophylaxis strategies respectively. Adding 4 weeks of school

closure resulted in a further halving. The scale of antiviral courses

required for these scenarios would preclude using the extended

strategy with a high diagnosis coverage for all but those countries

with very large antiviral stockpiles, but the potential reduction

achieved is considerable.

Estimating diagnosis coverage is difficult, requiring both

information on the prevalence (obtained for example through

serological surveys) and statistics on clinical diagnosis for the same

population. Perhaps due to the mild nature of the 2009 pandemic,

diagnosis coverage estimates that have been made are of the order

of 5%–10% [29,30], and are thus at the lower end of the range

simulated in this study. However, a pandemic perceived to be

more deadly might result in a higher diagnosis coverage,

motivating our choice of 50% for a baseline intervention value.

The sensitivity of the stockpile size to diagnosis coverage differs

qualitatively between the treatment-only and the prophylactic

strategies. At R0, = 1.5 increasing the diagnosis coverage beyond

these thresholds results in fewer antiviral courses being required.

This occurs because at these high diagnosis levels, the prophylaxis

strategies suppress infection spread to such an extent that the

entire scale of the local epidemic is reduced, consequently

requiring fewer, overall antiviral courses. An important caveat is

that this applies to epidemics with R0 = 1.5; for R0 . = 2.0, the

required size of the antiviral stockpile increases continuously with

an increasing diagnosis coverage.

We also show that school closure is an effective adjunct to all

antiviral strategies, reducing final attack rates, peak daily case

loads and the number of antiviral courses required. Prior studies

[13,21,22] with this model indicate that extending school closure

periods is increasingly effective, so we may surmise that concurrent

school closure periods longer than 4 weeks will be more effective

when coupled with an antiviral mitigation strategy. We also note

our simulated school closures were not optimally timed – Figures 4

and 5 show a characteristic ‘‘double hump’’ in the epidemic curve,

which is a due to schools re-opening after 4 weeks of closure and

the epidemic consequently accelerating at that point. We assumed

that schools would close upon 3 cases were diagnosed in the

school; whereas the time or triggering condition that gives the

largest reduction in attack rate depends on the transmissibility of

the epidemic and the duration of school closure [31]. A previous

study using the same simulation model examined the sensitivity of

the effectiveness of school closure to various alternative modelling

assumptions ([21], Supporting Information).

Table 2. Outcome of antiviral epidemic measures for
epidemics with various reproduction numbers

R0

intervention strategy 1.2 1.5 2.0 2.5

cumulative attack rate (%)

baseline 12.8 24.5 36.4 43.8

T 8.9 21.0 33.6 41.5

T + SC 5.9 17.1 27.9 36.3

T + H 5.8 16.5 28.6 36.0

T + H + SC 4.1 13.0 23.9 31.3

T + H + E 4.6 13.0 24.4 31.6

T + H + E + SC 3.5 10.7 22.6 29.8

peak daily incidence (per 10,000)

baseline 33 109 274 450

T 20 84 248 430

T + SC 11 39 107 235

T + H 13 56 195 367

T + H + SC 8 27 81 191

T + H + E 9 34 123 259

T + H + E + SC 7 19 62 140

antiviral usage (number of courses used as % of population)

baseline 0.0 0.0 0.0 0.0

T 4.4 10.5 16.8 20.7

T + SC 2.9 8.5 13.9 18.1

T + H 8.5 22.5 34.5 39.7

T + H + SC 6.0 17.7 28.7 34.3

T + H + E 15.3 33.4 47.1 52.7

T + H + E + SC 11.9 29.2 46.4 52.9

Cumulative attack rates (as % of population), peak daily incidences (per 10,000)
and number of antiviral courses used (as a % of population size) are given for
different intervention strategies and for baseline (i.e. unmitigated) epidemics
with four different reproduction numbers (R0). Intervention strategies are
abbreviated as follows: T – antiviral treatment of diagnosed cases, H –
prophylaxis of household of diagnosed cases, E – prophylaxis of school or work
contacts of diagnosed cases, SC – four weeks of school closure. In all cases
diagnosis coverage is 50% and diagnosis delay is 24 hours.
doi:10.1371/journal.pone.0013797.t002
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The reproduction number R0 of an epidemic can be difficult to

estimate at the outset of an epidemic as it can vary from strain to

strain, and from population to population for the same strain [32].

In order to determine the sensitivity of our results to variation in

R0, we repeated our simulation experiments for epidemics with R0

values of 1.2, 1.5, 2.0 and 2.5. We chose to report results for

R0 = 1.5 (giving a final symptomatic attack rate of 24.5%) in the

main paper as our baseline value as this value lies within the range

first estimated for the 2009 pandemic from Mexico outbreak data

(1.4–1.6) [14] and also within the wider range of subsequent

estimates which have ranged from 1.2 to 2.1 [15,16,17,18].

We assumed that differential susceptibility to infection among

age groups would lead to age-specific attack rates similar to those

of the 2009 pandemic, which differed from seasonal influenza

(which it was similar to in many other respects) in that the it

exhibited a greater numbers of cases in the 12–24 age group but

fewer cases in older age groups [19]. In order to determine the

sensitivity of our results to the assumption of 2009-like age-specific

attack rate, we repeated our simulation experiments assuming that

age-specific susceptibilities were similar to seasonal influenza.

There is also the possibility, not included in our model, that

infectiousness as well as susceptibility is age-dependant, with

children being more infectious than adults. If this is the case then

school closure is likely to be more effective than our results

indicate.

We found that compared to epidemics with age-specific

susceptibilities based on seasonal influenza, the baseline simulated

2009 epidemics exhibited a lower attack rate and lower peak daily

incidence; however, proportional reduction in attack rates achieved

by antiviral interventions were also lower. This indicates that the

effectiveness of antiviral interventions may be overestimated if

modelling is based on seasonal influenza data. We attribute lower

attack rate (compared to seasonal influenza with the same R0) to

the existence of a subpopulation (the 12–24 age groups) that had a

much higher individual susceptibility to infection but who mixed

disproportionately with themselves, compared to the larger

Table 3. Degradation in antiviral effectiveness due to diagnosis delay for epidemics with various reproduction numbers.

R0

1.2 1.5 2.0 2.5

intervention
strategy

zero-delay
attack rate
(%)

attack rate
increase (% per
12 hours delay)

zero-delay
attack rate
(%)

attack rate
increase (% per
12 hours delay)

zero-delay
attack rate
(%)

attack rate
increase (% per
12 hours delay)

zero-delay
attack rate
(%)

attack rate
increase (% per
12 hours delay)

baseline 12.8 24.5 36.4 43.8

T 6.2 1.06 17.4 1.23 31.0 0.93 39.2 0.78

T+SC 4.0 0.81 13.6 1.16 25.5 0.83 33.3 1.04

T+H 3.6 0.97 12.2 1.55 25.0 1.39 32.4 1.46

T+H+SC 2.8 0.54 8.7 1.57 21.5 1.04 28.2 1.34

T+H+E 2.8 0.73 8.8 1.65 20.9 1.33 28.7 1.18

T+H+E+SC 2.4 0.49 6.7 1.67 19.1 1.27 27.1 1.02

Cumulative attack rates (% of population) are given for zero diagnosis delay (i.e. administration of antivirals at the time of symptom appearance) along with the
approximate increase in final attack rate that results from each addition 12 hour delay (up to 48 hours). Results are given for different intervention strategies and for
baseline (i.e. unmitigated) epidemics with four different reproduction numbers (R0). Intervention strategies are abbreviated as follows: T – antiviral treatment of
diagnosed cases, H – prophylaxis of household of diagnosed cases, E – prophylaxis of school or work contacts of diagnosed cases, SC – four weeks of school closure. In
all cases diagnosis coverage is 50%.
doi:10.1371/journal.pone.0013797.t003

Table 4. Maximum antiviral usage for epidemics with various reproduction numbers

R0

1.2 1.5 2.0 2.5

Intervention
strategy

max AV
usage (%)

diagnosis
coverage (%)

max AV
usage (%)

diagnosis
coverage (%)

max AV
usage (%)

diagnosis
coverage (%)

max AV
usage (%)

diagnosis
coverage (%)

T 5.6 90 17.1 100 30.7 100 38.8 100

T+SC 4.2 100 13.7 100 25.1 100 32.8 100

T+H 8.7 70 25.8 90 50.3 100 61.6 100

T+H+SC 6.2 90 19.6 80 42.4 100 51.3 100

T+H+E 15.3 50 35.3 70 60.0 100 71.6 100

T+H+E+SC 12.6 80 30.1 60 58.2 100 72.8 100

Maximum number of antiviral course used (as a % of population size) is given along with the diagnosis coverage that gave rise to that maximum. Results are given for
different intervention strategies and for baseline (i.e. unmitigated) epidemics with four different reproduction numbers (R0). Intervention strategies are abbreviated as
follows: T – antiviral treatment of diagnosed cases, H – prophylaxis of household of diagnosed cases, E – prophylaxis of school or work contacts of diagnosed cases, SC –
four weeks of school closure. In all cases diagnosis delay was 24 hours.
doi:10.1371/journal.pone.0013797.t004
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population. The qualitative effectiveness of antiviral interventions

was very similar however, with the effects of antiviral strategies,

diagnosis delays and diagnosis coverage following the same pattern

in both cases.

Our model of antiviral effectiveness assumed that antiviral

effectiveness in reducing infectivity (AVEi) was constant regardless

of when antiviral treatment was initiated. This is possibly too

simplistic; it might be the case that antiviral effectiveness declines

rapidly as infection develops within the infected individual. We

examined an alternative assumption that AVEi drops rapidly with

treatment delay, halving with each additional 24 hour delay. We

found that under this assumption the additional decline in

effectiveness of antiviral treatment strategies due to treatment

delay was small. It appears that most of the reduction in

effectiveness due to treatment delay is simply due to the fact that

a proportion of an infected individual’s infective duration goes

untreated, and that this period, just after symptom appearance, is

when many transmission events are concentrated, due to this being

a period of high infectivity. Assuming that delayed treatment also

resulted in lower AVEi once treatment was initiated did result in a

higher attack rate compared to the assumption of constant AVEi,

but this effect was small compared to the effect described above.

Given that antiviral delayed usage results in a smaller effect per

course of drugs, an alternative strategy to make use of limited

antiviral resources might be to limit antiviral usage to individuals

who are either suffering serious complications or seek medical

attention immediately on developing symptoms. The current study

cannot quantitatively assess this strategy; and since this strategy

would require rapid diagnosis the effect of false-positive diagnoses

would need to be taken into account.

Another factor that may strongly influence the effectiveness of

antiviral strategies is how the infectiousness of an individual

changes over time. Our sensitivity analysis demonstrated that if the

infectivity profile is sharply peaked around the time of symptom

development (and drops off rapidly afterwards), delays in the

administration of antivirals are even more detrimental.

Other influenza simulation studies have used a similarly peaked

infectivity profile [9,33]. This profile matches the viral shedding

profile data reported in the literature [20,34], if it is assumed that

infectivity is linearly proportional to the measured viral titre. The

peaked infectivity profile assumption results in a short serial

interval of 1.85 days, compared to 2.32 days for our original less

peaked (i.e. having lower kurtosis) infectivity profile. Serial interval

estimates for A/H1N1 2009 influenza range from 1.91 [14,15] to

2.9 [15], so it is difficult to determine from serial interval data

which is more appropriate.

Related Work
Previous simulation studies have modelled antiviral mitigation

strategies, primarily in an H5N1 context [9,10,11,35,36,37,38,39].

Some of these studies have examined the effect of delays to, and

the proportion of cases receiving, antivirals; none have specifically

modelled epidemics with characteristics based on data from the A/

H1N1 2009 pandemic.

As with our study, that reported in (Ferguson et al. 2006) for a

similar reproduction number also indicates that both delaying

treatment and treating a smaller proportion of cases increases the

cumulative attack rate, the maximum daily incidence and the

number of antiviral courses required. Additionally, we have

quantified this result for in two further antiviral strategies and for a

wider range of R0 values.

The modelling study reported in [12] examined several

logistical constraints on antiviral usage in an influenza pandemic,

including the proportion of infected individuals who were treated.

Although different modelling assumptions make comparison

difficult, a common finding was that for an epidemic with an R0

of 1.5, maximum antiviral usage occurs when approximately 50%

of cases are diagnosed. Additional results from our study also

indicates that this phenomenon is no longer true as R0 increases:

for R0 approximately $2.0 increasing diagnosis coverage always

leads to increased antiviral usage.

A simulation study that assessed the importance of fast test kits,

which would allow diagnosis in one hour as opposed to 12 hours,

found that delays in this range were less important than the choice

of strategy (e.g. treatment compared to treatment plus prophylax-

is), which is consistent with our results [40].

In the study reported in [10] the effect of delaying diagnosis and

thus application of antiviral medication an additional day (from 24

to 48 hours) for a combined treatment and extended prophylaxis

strategy is also shown to increase both the attack rate and the

number of antiviral courses required. This study found that a

24 hour delay assuming a 50% false-positive diagnosis coverage

was superior to a 48 hour delay with no false positives. However

these results indicate very small resulting attack rates following

activation of the antiviral measures, for example reducing the

unmitigated cumulative attack rate from 32.6% to between 3.7%

and less than 1% for a range of treatment and targeted antiviral

strategies, for a reproduction number comparable to that used

here. Given the resulting attack rates are perhaps unrealistically

small, the effect of delaying antiviral intervention may be more

marked than that determined here.

The results presented here are subject to several limitations. We

have assumed that the pandemic influenza strain is susceptible to

neuraminidase inhibitors and have not attempted to model the

effects of antiviral resistance. We have not modelled the potential

which antiviral drugs have to reduce or prevent occurrence of

serious adverse infection outcomes, which may well make antiviral

treatment a worthwhile strategy even in scenarios where only a

small stockpile is available or where only small numbers of (serious)

cases are diagnosed. Also, our simulated population has demo-

graphic, mobility and contact patterns typical of an industralised

country setting and may not be applicable to other populations.

Conclusion
Our evaluation of antiviral drug interventions using a detailed

simulation model shows that their effectiveness, and the required

antiviral stockpile size, is strongly dependent on (i) the delay

occurring between symptom onset and diagnosis, and (ii) the

percentage of the infected population being diagnosed, and

consequentially benefiting from antiviral administration.

How do the results presented here relate to the actual antiviral

interventions implemented during the 2009 A/H1N1 pandemic?

Procedures for diagnosing pandemic influenza for the purposes of

antivirial treatment or prophylaxis varied considerably between

and within countries, and varied according to the stage of the

epidemic; however some general conclusions can be drawn.

Evidence suggests that due to the mild nature of the symptoms

of the A/H1N1 2009 virus, the proportion of infected people

seeking medical attention was low, perhaps on the order of 5%–

10% [29,30]. While antiviral drugs have the potential to reduce or

prevent occurrence of serious adverse infection outcomes for

treated individuals, our results show that at this low level of

diagnosis antivirals have essentially no population-level effect in

reducing overall transmission.

Secondly, amongst pandemic plans that called for laboratory

testing of suspected cases, a 48-hour turn-around time for testing

was anticipated [1], and the experience during 2009 was that

average turn-around times were in fact 48-hours or longer (this
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was the experience, for example, in Western Australia [41]). Our

results show that if diagnosis on this timescale is used for the

prescription of antivirals for treatment or prophylaxis, their

effectiveness is greatly diminished. An alternative diagnosis policy

of prescription upon presentation with influenza-like illness (ILI)

symptoms would thus improve antiviral effectiveness, but at the

risk of higher antiviral usage due to distribution of antivirals for

non-influenza ILI.

While the 2009 A/H1N1 pandemic strain has been character-

ized as mild, our results are equally applicable to a more

pathogenic pandemic having similar transmissibility (R0 = 1.5). In

the case of the emergence of such a virulent strain, it is anticipated

that antivirals would be employed on a large scale as part of an

effort to contain infection spread.
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