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Abstract 
High-performance wildfire simulators allow the future location of a wildfire to be rapidly predicted. The 

accuracy of such simulators needs to be evaluated; this can be achieved by comparing simulated and observed 

spread for documented historical fires. A key issue relates to the accuracy of data obtained from historical fires, 

such as the time-varying fire location, fire-ground weather and accuracy of fuel type, load and structure data. A 

methodology used to evaluate the accuracy of wildfire simulators using historical fire data is presented and 

applied to the AUSTRALIS wildfire simulator using the four distinct phases of a large-scale wildfire occurring in 

Western Australian sand-plain heathlands and a fire reconstruction report on this fire produced by a wildfire 

expert. Challenges encountered in performing this validation exercise are highlighted. 
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 Introduction  

 

A methodology used to evaluate the accuracy of wildfire simulators using historical fire data is 

presented. Application of the methodology was examined using the four phases of a large-scale 

wildfire occurring in Western Australian sand-plain heathlands and a fire reconstruction report on this 

fire produced by a wildfire expert. The spatio-temporal dynamics estimated from the reconstruction 

report was compared with simulated fire behaviour, as produced by the AUSTRALIS wildfire simulator. 

The availability of rapid automated fire prediction permits the many variables which influence fire 

spread to be quickly examined by changing simulator input parameters, such as forecast wind speed 

and direction, to determine how such changes may impact on the spread characteristics of the fire. 

While simulators such as the AUSTRALIS wildfire simulator allow the future location of a wildfire to 

be rapidly predicted, and geographical information systems (GIS) maps with forecast fire-lines 

overlayed on them to be quickly made available to fire managers, the accuracy of such simulators 

needs to be examined by application to high-quality datasets from prior fires. A key issue relates to 

the accuracy of data obtained from historical fires, such as time-varying fire location, fire-ground 

weather and accuracy of fuel type, load and structure data, which are necessary if meaningful 

comparisons are to be made. 

 

 Methods  

 

Simulating the spread of wildfire across a real landscape may, like simulation of other complex natural 

phenomena, be impacted by multiple sources of inaccuracy. First, the input data used for simulation 

will be subject to inaccuracy. For example, spatial boundaries in vegetation maps have limited 

precision and may have changed since the map was generated; initial fire perimeters are generally 

approximate; the closest meteorological observations may have been taken tens of kilometres from the 

fire-site. Second, predictive models relevant to fire behaviour, such as fire behaviour models for 

predicting rate of spread, slope correction, two-dimensional fire shape models, and fuel accumulation 

models, are all idealised models that approximate real phenomena. Third, the simulation methodology 

itself can introduce inaccuracy. For example, the discrete event simulation approach of AUSTRALIS 

(Johnston et al. 2008) relies on spatial discretisation, where the landscape is partitioned into cells that 

are assumed to have homogeneous attributes, such as vegetation, slope and aspect. When the spatial  
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resolution of the cell grid is coarse relative to the features being modelled, then the assumption of 

homogeneity is likely to be inaccurate for many cells. Given the need for accurate wildfire spread 

prediction these issues need to be overcome, and this provides the rationale for the reported study. 

 

The general validation technique used in this paper is as follows: 

 Obtain topographic, meteorological and fuel data for a historical fire event. Also obtain 

reconstructed fire spread perimeters and initial ignition/fire front locations 

 Simulate the fire using the obtained data and generate a progression of fire spread perimeters 

 Compare the level of agreement between the simulated and reconstructed fire progression 

perimeters 

 Assess the impact of uncertainty in the input data, fire behaviour models, and simulation 

algorithm on simulation accuracy by extensive sensitivity analyses. 

 

In this paper, a case study of the above methodology is presented in which the AUSTRALIS wildfire 

simulator (Johnston et al. 2008) is applied to a large-scale historical fire that occurred in the vicinity 

of the Boorabbin National Park, Western Australia (WA) in December 2007 and January 2008. 

 

This fire burned a total area of approximately 18,000 hectares over the 4 phases that were simulated. 

The topography consisted of gently undulating sand-plains and broad, shallow valleys. Two types of 

vegetation were present: Eucalypt woodland characterised by a very sparse understorey layer and a 

lack of fuel continuity, and semi-arid sand-plain heath (see Figure 1). Two government reports into 

the Boorabbin fire were produced as part of a coronial inquest following deaths which occurred on the 

fourth phase of the fire. These reports provided (i) a comprehensive assessment of the fuel and 

meteorological conditions occurring during the course of the fire (Bureau of Meteorology 2008; de 

Mar 2008), and (ii) a reconstruction of the fire perimeters over several phases of the fire at time steps 

ranging from 15 minutes to 3.5 hours (de Mar 2008). The existence of this detailed fire reconstruction 

data facilitated use of the following method. 

 

Comparison between the simulator-generated, time-varying progression of the fire-line and an 

independently produced fire behaviour reconstruction produced as part of a coronial inquiry into 

deaths resulting from one of the four constituent fire phases was made. The accuracy of the simulated 

fire against the fire reconstruction contained in the report was determined using a number of measures, 

such as agreement of the headfire rate-of-spread (RoS) and the fit of the time-varying fire perimeters. 

The reconstruction report made use of high-resolution (less than 20m) satellite imagery to establish 

the final fire perimeter; however very limited data (i.e. firefighter recollection and limited aerial and 

ground photography) was available for the estimation of intermediate perimeters. Four distinct 

component fire phases were simulated, with the maximum Fire Danger Index ranging from 28 (high) 

to 104 (very extreme) across the four fire phases. 
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Figure - 1 Predominant vegetation present at the fireground. Left: sandplain heath-scrub. A short scrub assemblage 

typical of that occurring in the higher parts of the landscape. Note the low, patchy nature of the vegetation. The taller, 

isolated shrubs in the background are mature Callitris, and indicate that this area has not been burnt for 25 years. 

Right: unburnt Tamma scrub. An expanse of Tamma scrub similar to the vegetation that burnt during the run of the 

fire to the highway where the fatalities occurred. Note the short, relatively dense vegetation structure. Tamma scrub is 

one of the denser heath-scrub assemblages (high level of fuel continuity) likely to support faster moving fires than 

occur in patchier heath scrub vegetation types. Photographs and annotations taken from (de Mar 2008). 

Simulated fire progression perimeters were generated using the AUSTRALIS simulator, using fuel type 

and coverage data from the reports, a national vegetation mapping data set (Australian Government 

Department of the Environment 2014), meteorological data from the nearest Bureau of Meteorology 

Automatic Weather Station (AWS) at Southern Cross, and a fire behaviour (rate-of-spread) model 

developed for arid heathland (Cruz et al. 2010). Simulator accuracy was assessed via a statistical 

comparison of the spatial extent of the simulated perimeters against the estimated perimeters taken 

from the reconstruction report, at corresponding time-steps. 

AUSTRALIS employs a discrete event simulation technique (Zeigler et al. 2000) that is based on 

partitioning the landscape into a collection of two dimensional cells and calculating the propagation 

delay between an ‘ignited’ cell and each of its ‘unburnt’ neighbours. Each cell contains state 

information (‘unburnt’ and ‘ignited’) and a number of attributes relevant for calculating propagation 

delay, including location, elevation, and fuel characteristics such as vegetation type and fuel load. In 

contrast to other cell-based approaches to wildfire simulation, the cell locations are distributed 

randomly, rather than regularly, across the landscape. This is done to avoid a form of fire shape 

distortion that results from using a regular partition, such as with a rectangular or square grid. For all 

simulations in this study, the average distance between cell centroids was 50 m. Other fire spread 

simulation systems that use a discrete cellular representation of the landscape include FSPro, part of 

the U.S. Forest Service WFDSS system (Finney 2002; Finney et al. 2011), PYROCART (Perry et al. 

1999), and FireStation (Lopes et al. 2002). 

The validation technique presented in this paper may be used to validate any fire spread simulation 

system that predicts fire-front time of arrival across the landscape. Systems that do not use an 

underlying cellular landscape structure, such as FARSITE (Finney and Ryan 1995), Prometheus 

(Tymstra et al. 2010), and SIROFire/Phoenix (Coleman and Sullivan 1996; Tolhurst et al. 2008), may 

be accommodated by first running fire spread simulations and then rasterising both the estimated and 

simulated fire arrival time maps to generate cells for the purpose of accuracy assessment (see below). 

We note that in order to conduct extensive sensitivity analyses of the type presented in this paper, the 

ability to run many (hundreds) of fire spread simulations rapidly is beneficial, and it may not be 

practical to apply this kind of sensitivity analysis to computationally intensive, physics-based 

simulation systems such as FIRETEC (Linn et al. 2002). 

The accuracy of the AUSTRALIS simulator at predicting the fire spread progression of the Boorabbin 

fire was measured as follows. At the conclusion of a simulation, AUSTRALIS output the fire arrival time 

for each cell that ignited. The accuracy of the simulated fire spread was assessed by comparison to a 
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detailed reconstruction of the estimated fire progression which had mapped intermediate fire 

perimeters throughout the course of the fire at time step intervals of at most 3.5 hours over the four 

phases of interest. Accuracy was determined using Cohen’s kappa coefficient (K), a statistical measure 

of agreement between two geo-spatial datasets, which has been used previously for assessing the 

accuracy of fire spread simulation (Arca et al. 2007). Cohen’s kappa is given by:  

𝐾 =
𝑁∑ 𝑥𝑖𝑖

𝑘
𝑖=1 − ∑ (𝑥𝑖+ − 𝑥+𝑖)

𝑘
𝑖=1

𝑁2 − ∑ (𝑥𝑖+ − 𝑥+𝑖)
𝑘
𝑖=1

 

where x is the error matrix, i.e. xij is the number of simulation cells where the simulated and 

reconstructed fires arrive in time period i and j respectively; , xi+ and x+i are the marginal totals of 

row i and column i respectively, and N is the total number of samples. Kappa typically varies over 

[0,1], where K = 0 indicates that agreement is due to chance alone, and K = 1 indicates perfect 

agreement. 

 

 Results 

 

    

Phase 1: 2359 

kappa = 0.62 

Phase 2 : 1900 

kappa = 0.49 

Phase 3a: 1900 

kappa = 0.33 

Phase 3b : 2359 

kappa = 0.42 

Figure 2. Final fire perimeters estimated by the reconstruction report (shaded) and simulated by AUSTRALIS (black 

line) at the end of each phase. The agreement statistic kappa is given for each phase, which takes into account 

agreement between intermediate estimated and simulated fire perimeters (not shown). Spread under-predictions in 

Phase 2 and 3a marked Y are due to vegetation mapping inaccuracies; spread over-prediction in Phase 3b (marked Z) 

is due to weather data inaccuracy. 

Using the available data AUSTRALIS were able to approximately reproduce the observed fire behaviour 

in each of the four phases, as shown in Figure 2. 

 

Following the initial simulations of the four phases, an extensive series of sensitivity analysis 

experiments were conducted in order to determine the factors which limited the accuracy of the 

simulation system. The simulation input parameters that were varied and the range of values used are 

given in Table 1. In the case of the weather time series, adjustments were made by adding or 

subtracting a fixed amount from the value of the variable at each time step. For vegetation cover, all 

landscape cells containing heath vegetation were set to an alternative percent cover score (PCS) value. 

For fire behaviour models, each sensitivity analysis simulation used an alternative fire behaviour 

model to calculate rate of spread occurring in heath vegetation. 
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Table 1. Simulation parameters varied in sensitivity analysis simulations and the series of parameter values examined 

for each. Abbreviations are as follows. AWS – automatic weather station; U10 – 10 m wind speed recorded at the 

Southern Cross AWS; WD – wind direction (degrees clockwise from North); WS – wind speed (kilometres per hour); 

T – temperature (degrees Celsius); RH – relative humidity (percentage); PCS – percentage cover score; HE – semi-

arid heath model (Cruz et al. 2010); MH1 – mallee heath (McCaw 1997); MH2, MH3 – semi-arid mallee heath (Cruz 

et al. 2010); SH – shrubland (Catchpole et al. 1998); HG - (Burrows et al. 2009). 

Simulation parameters and models Baseline value/model Sensitivity analysis range 

Cell grid 

Cell size (m) 50 

50, 100, 250, 500, 750 

5 randomly generated grids at each 

size. 

Meteorological variables 

Wind speed measured at 10 m (km/h) Southern Cross AWS 

(U10) 

U10 ± 5, U10 ± 10, U10 ± 15, U10 ± 

20 

Wind direction () As above (WD) WD ± 5, WD ± 10, WD ± 15 

Temperature (C) As above (T) T ± 5, T ± 10, T ± 15 

Relative Humidity (%) As above (RH) RH ± 5, RH ± 10, RH ± 15 

 

Fuel variables 

PCS of elevated fuel layer (0–4) 1.5 1, 1.5, 2, 2.5, 3, 3.5, 4 

 

Fire behaviour models 

Fire behaviour model for heath vegetation  HE HE, MH1, MH2, MH3, SH, HG 

 

In the following subsections we summarise the results of these sensitivity analyses. We describe the 

outcome of the analyses in two parts: the effect of simulation algorithm cell size, and results showing 

a dichotomy between the first two phases of the fire and the second two phases, which occurred under 

extreme fire weather conditions. 

 

 Impact of the cell grid on simulation accuracy 

As described previously, the AUSTRALIS simulator discretises the landscape into a set of randomly 

placed cells. This technique potentially introduces two sources of inaccuracy into the simulation 

results. Firstly, as with any simulation algorithm based on a cellular landscape discretisation, if cells 

are too large, it will not be possible for any set of simulation-generated cells to represent realistic fire 

shapes without either under- or over-fitting. Secondly, since the cell locations used by AUSTRALIS are 

randomly generated, simulation outputs can vary from one simulation run to another, even with 

identical simulation inputs. Both of these potential sources of inaccuracy decrease with decreasing cell 

size, as illustrated in Figure 3. In Figure 3A it can be seen that with a large cell size, the simulation of 

an ideal elliptical fire spread shape is considerably distorted, whereas in Figure 3B the elliptical fire 

shape is closely approximated. Comparing Figure 3B with 3C, it can be seen that simulations using 

two different randomly chosen grids with the same small cell size give rise to very similar fire shapes. 
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A B C 

Figure 3. Three AUSTRALIS simulation outputs for an idealised case with uniform fuel and a northerly wind. A (left) 

cell spacing 750m, B (middle) cell spacing 150m, C (right) cell spacing 150m, but with different randomly generated 

grid. 

In order to quantify these effects of cell size in the context the Boorabbin simulation study, each of the 

four phases of the fire were simulated using cell grids generated with cell spacing ranging between 

50–750 m, with five random cell grids being generated for each cell size. Two important results were 

apparent. Firstly, accuracy (i.e. agreement between estimated and simulated fire spread) increased as 

cell size decreased from 750 to 250 m, and remained constant below 250 m, indicating that below this 

cell size inaccuracy in simulation output was not due to discretisation error but was due to other sources 

(as discussed below). Secondly, the variance in simulation outputs due to the random nature of the cell 

grid diminished with cell size. For the 50m cell size used in the rest of the study, the results indicated 

that random grid variance artefacts do not significantly influence our results (95% confidence intervals 

for Kappa values were +/- 0.016 or smaller). 

 

 Impact of extreme fire weather on simulation accuracy 

In this section we describe a clear distinction in the simulation accuracy sensitivity analysis results 

between the first two phases of the fire, during which the fire danger index (McArthur 1966) ranged 

from 20 – 28 (High), and the third and fourth phases, during which the fire danger index ranged from 

47 to 104 (Extreme). For each of 4 key simulation parameters, Table 2 shows which parameter value 

resulted in the most accurate simulation i.e. the highest kappa value k. If this value was not the baseline 

parameter value (baseline values are given in Table 1), the variation from the baseline is given along 

with the improvement in kappa over the baseline. 

Table 2. Summarised results of sensitivity analysis simulations, showing the best accuracy value kappa (k) achieved 

by varying each simulation parameter. Where the best k value is greater than that of the baseline simulation, the 

baseline k value is given in parenthesis for comparison. The simulation parameter value that gave the best accuracy is 

also shown: where the notation “baseline” is used, this value was the baseline value shown in Table 1; otherwise, the 

deviation from the baseline value is given. 

 Phase 1 Phase 2 Phase 3A Phase 3B 

Variable best k 

value 

for 

best k 

best k 

value 

for 

best k 

best k 

value 

for 

best k 

best k 

value 

for 

best k 

wind speed 0.63 (0.62) – 5kph 0.49 baseline 0.44 (0.33) + 20km/h 0.58 (0.42) + 20km/h 

wind direction 0.62 baseline 0.49 baseline 0.47 (0.33) – 15° 0.42 baseline 

PCS 0.62 baseline 0.49 baseline 0.54 (0.33) + 3.5 0.58 (0.42) + 1.5 

FBM 0.62 baseline 0.49 baseline 0.49 (0.33) MH1 0.56 (0.42) MH1 
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The sensitivity analysis simulations revealed that for Phases 1 and 2, the most accurate simulation 

results were given by the baseline parameter settings. In other words, the weather time series from the 

Southern Cross AWS, the estimate of vegetation cover (PCS) as having a value of 1.5, and the selection 

of the heathland fire behaviour model yielded the most accurate simulation results. In the case of the 

wind speed during Phase 1, a very slight improvement in simulation accuracy was given by reducing 

the Southern Cross AWS wind speed by 5 km/h Note that this is not a claim that the baseline parameter 

values were “correct” – rather, these results show that simulation inaccuracies are not simply explained 

by errors in the weather data, vegetation coverage estimate, or selection of an inappropriate fire 

behaviour model. For example, one apparent source of inaccuracy was due to the resolution of the 

vegetation map. Inspection of the Landsat imagery of the area showed that some areas of the map 

marked as Eucalypt woodland were interspersed with heath and carried fire; simulation in these areas 

under-predicted the extent of fire-spread (see areas marked Y in Figure 2). 

The situation for Phases 3A and 3B is quite different. In terms of wind direction, in Phase 3A the 

simulation with the greatest accuracy occurred for a wind direction series in which all wind readings 

were rotated 15 counter-clockwise from the (northerly) winds recorded at the Southern Cross AWS. 

This result is consistent with de Mar’s (2008) analysis that transient westerly winds occurred during 

this phase at the fire-site and impacted the shape of the perimeters. In Phase 3B, the wind direction 

was clearly inaccurate at the beginning of the period (see Figure 4, up to 2100), resulting in over-

prediction of westerly spread in the area marked ‘Z’ in Figures 2 and 4. Unlike Phase 3A, no simple 

uniform alteration of wind direction improved accuracy. 

Table 2 shows that simulation accuracy is improved if the wind speed during the Phases 3A and 3B 

were 20km/h faster than the value recorded at Southern Cross AWS. Simulation accuracy was also 

improved if it was assumed that the vegetation cover of the heath vegetation burned during Phases 3A 

and 3B was higher than estimated, or if a Mallee Heath (MH1) fire behaviour model was used for 

heath vegetation. These three sensitivity analysis results are actually manifestations of a single factor: 

that the baseline simulation systematically under-predicted the rate of spread during Phase 3B. This 

is illustrated in Figure 4, which shows both estimated and simulated fire perimeters at 2030, 2045, 

2100 and 2359. In each case the simulated fire front lags the fire front position estimated from the fire 

reconstruction report. The under-prediction of the rate of spread may thus be due to: 

1. The actual wind speed being higher than the value recorded at Southern Cross. Given that the 

Southern Cross AWS was located 75km from the fire ground, and the clear discrepancies in 

wind direction noted above, discrepancies in wind speed are plausible. The HE fire behaviour 

model would then predict a faster rate of spread, more closely matching the estimated fire 

behaviour. Or, 

2. The heath vegetation burned during Phase 3B having a higher vegetation cover than in the 

previous phases. Although the available vegetation input map data did not distinguish between 

heath scrub types, according to (de Mar 2008) the fire site contained both ‘heath-scrub’ and 

‘Tamma scrub’. Of these two types of heath vegetation Tamma scrub, which was present in 

some areas burnt during Phase 3B, had characteristically higher levels of cover. With a higher 

vegetation cover, the HE fire behaviour model predicts a faster rate of spread. Or, 

3. The HE fire behaviour model under-predicting the rate of spread in extreme fire weather 

conditions. This is plausible, given that the heathland experimental fires on which the HE 

model was based were conducted under less severe weather conditions: the maximum 

experimental fire danger rating was Very High compared to the Extreme conditions during 

Phase 3B, and maximum experimental wind speeds were approximately 18 km/h, compared to 

the average Phase 3B wind speed of 37 km/h. Or, 

4. Some combination of the above. 
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2030 2045 2100 2359 

Figure - 4 The progression of the fire during Phase 3B. Simulated (black line) and estimated (shaded) fire perimeters 

are shown for times 2030, 2045, 2100 and 2359. The annotation “Z” is discussed in the text. 

Using the data available for our validation analysis, we were not able to distinguish between the 

possibilities 1-3 above.  

 

 Discussion 

 

Several previous studies have sought to validate fire spread simulation systems by comparing 

simulated fire spread against historical fire data, for example the studies of Finney (Finney 2000), 

Fujioka (Fujioka 2002), Arca et al (Arca et al. 2007), and Fillipi et al (Filippi et al. 2014). In common 

with previous validation exercises, this study found that that the ability to perform validation was 

limited by the reliability of available data, with fireground weather presenting the largest obstacle. 

While this study identified that the AUSTRALIS simulation system under-predicted the of rate of spread 

in arid heathland vegetation under extreme fire conditions, it was not possible to further diagnose either 

wind data, fuel mapping data, or fire behaviour models as the cause of the under-prediction. 

The very features which this study highlighted as presenting difficulties in conducting a validation of 

the accuracy of computer simulation of wildfire spread (using high quality data) are exactly those 

which impact on the use of such simulation technology “in the field”. As well as conducting simulation 

model validation using historical fire data, there is a pressing need to collect accurate fire data during 

active wildfires, rather than conducting analysis after the event. Such data-gathering efforts include 

regular fire line mapping at hourly intervals and the recording of fire ground weather conditions. 

Together, accumulated GIS data on fuel types, fuel load, and the development of fire behaviour rate-

of-spread models which are experimentally calibrated for extreme fires, these data will facilitate: (1) 

higher fidelity simulator validation studies and, (2) more accurate prediction of “live” wildfires, which 

currently may be compromised by source data quality. Fire agencies and fire personnel organisations 

are to be encouraged to address these data issues. 
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