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Abstract. This paper presents some of the results of our cellular au-
tomaton (CA) based epidemic model. Of particular interest is how a CA
can produce patterns of spread dependent on geographical conditions.
The model described here, although unvalidated, produces patterns of
emergent behaviour which intuitively mimics what we observe in nature.
This leads into the possibility of using CA-based simulations for ‘what
if?’ game playing and hence improve our understanding, analysis, pre-
diction, and possible containment of epidemic spread that is influenced
by geographical factors.

1 Introduction

Public health issues are seeing greater visibility in the media; of particular con-
cern is virus spread in populated areas. Decreased worker productivity as a
result of illness costs industry millions of dollars every year [1]. With recent
virus epidemics such as foot and mouth disease in the United Kingdom [2],
Avian influenza in the Hong Kong and the Netherlands [3], and of course the
Severe Acute Respiratory Syndrome outbreak in Asia [4], the monitoring of out-
breaks is gaining importance for governments and public health officials. Hence
it is desirable to predict patterns of viral infection given certain environmental
conditions. It is hoped that modelling geographically dependent features of a
phenomenon such as virus spread will help us better understand, predict, and
ultimately control that phenomenon’s behaviour.

1.1 Non-homogeneous Population and Disease Spread

The majority of existing epidemic models utilize differential equations [5, 6] and
do not take into account spatial factors such as variable population density and
population dynamics [7]. These models, such as those using mean field type equa-
tions [8] and Markov chains, assume populations are closed and well mixed; that
is, host numbers are constant and individuals are free to move wherever they



wish. When trying to devise more realistic models we incorporate spatial param-
eters to better reflect the heterogeneous environment found in nature. An alter-
native to using deterministic differential equations is to use a two-dimensional
cellular automaton to model location specific characteristics of the susceptible
population together with stochastic parameters which captures the probabilistic
nature of disease transmission.

1.2 Cellular Automata

Cellular automata (CA) are characterized by their discretization of space and
time [9]. Typically a cellular automaton consists of a graph where each node is a
finite state state automaton (FSA) or cell. This graph is usually in the form of a
two-dimensional lattice whose cells evolve according to a global update function
applied uniformly over all the cells. As arguments, this update function takes
the cell’s present state and the states of the cells in its interaction neighbourhood

as shown in Fig. 1. The interaction neighbourhood is a collection of nearby cells
which the update function interrogates for state information. The size and shape
of neighbourhoods vary from application to application.
As the CA evolves, the update function will determine how microscopic, or

local, interactions influence each other to the overall macroscopic behaviour of
a complete system.

Fig. 1. State transitions depend on neighbourhood states.

1.3 What is a virus?

Viruses are primitive organic entities, so primitive that scientists are reluctant
to class them as living organisms. On their own, viruses are lifeless and un-
able to reproduce [10]. Viruses comprise two main components: genetic material
and protective protein coating. The primary goal of a virus is to replicate by
penetrating living cells, rewriting their DNA, and programming them to create
hundreds of copies of the virus as they replicate rapidly
Whilst a single infected host may not have much significance, a virus that has

spread through a large population of hosts presents serious health and economic
threats. The study of the health of entire populations, particularly those exposed



to an infectious disease, is known as epidemiology; this paper reports the outcome
of a study of cellular automata as the basis for a new class of models applicable
to infectious disease epidemiology.

1.4 What is an epidemic?

The term ‘epidemic’ is often misused; most people actually mean an ‘outbreak’.
In either case, it is important to remember that ‘epidemic’ and ‘outbreak’ are
relative terms whose meaning varies between viruses and environments. For in-
stance, during any one time there are thousands of cases of influenza across
Australia: influenza is endemic. An outbreak of a hundred cases would not be
cause for alarm. However, if there was just a single case of smallpox, its high
mortality rate and the lack of immunity in our population means health au-
thorities would be placed on high alert and severe containment measures put in
place. When an outbreak reaches many times the endemic level, it is classed as
an epidemic. Large scale epidemics such as the influenza outbreak in 1918 are
deemed pandemics [11].
Epidemics are an integral part of nature and the possibility of major health,

economic, and military impacts of epidemics makes them the subject of extensive
modelling research.

2 Epidemic Models

Models of epidemic spread all share one property: the virtual world in which
they run is an idealized and approximate one. This arises from the difficulty of
incorporating all the variables we see in nature into a simulation that is both
accurate and tractable. When modelling a complex system there is a trade-off
between a model’s degree of abstraction and its usefulness; that is, which details
can be excluded without devaluing the results?

In the SIR epidemic representation framework [7], a host can be Susceptible,
Infective, or Recovered. Susceptible individuals are those who are healthy and
do not carry the virus but can contract it from infective hosts. Infective hosts
carry the contagion and are able to pass it on to another host. Finally, recovered



hosts are those who are no longer infective and have acquired immunity from
future infection. Note that this immunity is not necessarily everlasting and that
the transition between the S, I, and R states is probabilistic, with probabilities
being determined by the observed characteristics of specific diseases.

3 CA Model for Disease Dynamics

The cell evolution in a cellular automaton follows an update function that takes
the state of a particular cell and its neighbours and determines the next state.
Some previous models have used deterministic update rules [12], but probabilistic
rules appear to reflect nature more accurately [13–15]. Here we describe the cell
and update rule definitions adopted in our probabilistic epidemic model.
A CA cell represents an equal sized area of landscape containing a specific

population. Different cells will have different populations, that is, differing den-
sities and possibly different ‘across cell’ traversal or mobility properties.

3.1 Cell Definition

The basic behavioural unit in our model is a cell. Here, ‘cells’ are automata
cells and not biological cells. The user is able to define the physical area of
landscape which is modelled by a single cell by adjusting various epidemic spread
parameters. For example, if for a particular execution of the simulation the
host mobility parameter is set very small, the cells can be interpreted as being
physically large compared with a later simulation where the mobility is set high.
This is because in the first case, the low mobility (or high traversal difficulty)
can be equated to the large distances hosts need to cover to reach adjacent cells
and so pass the disease on to adjacent cells.
For our model, care must be taken to differentiate cells from the hosts that

reside inside the cells. Each cell has the following attributes which are used to
determine differences in population densities and mobility, usually determined
by geographical (spatial) features such as urban versus countryside, and ready
movement versus limited village-to-village movement.

– carrying capacity,
– total population,
– susceptible subpopulation,
– infective subpopulation, and
– recovered subpopulation.

The carrying capacity of a cell is used as a mechanism to limit the movement
of hosts between cells. It prevents crowding within a particular cell; it is an
abstract measure of surface area. The number of newborns is also dependent
on whether a cell has reached its carrying capacity. Although the effect of the
land’s carrying capacity is not directly enforced in nature, for the purposes of
simulation, it is a straightforward way to encourage or attenuate the motion of
individuals between cells.



Traditionally, as in the CA of von Neumann [16], a single ‘object’ occupied
each of the cells that constituted the larger cellular automaton. Rather than
stipulate this, our model allows multiple individuals to dwell in one cell up to
the above-mentioned carrying capacity. Variable cell population has two main
purposes: first it reduces the total number of cells and hence reduces compu-
tation time; secondly it provides generality. If we set the carrying capacity to
one we can revert back to a ‘classic’ cellular automaton. Note that each cell is
considered well-mixed in the sense that during each time step, all the individuals
in a particular cell will come in contact with one another.

3.2 World Definition

A two–dimensional array of cells and the epidemic spread parameters that gov-
ern their evolution constitute the world that the hosts ‘live’ in. The cells are
arranged in a rectangular grid comprising square cells with external dimensions
that may or may not be square. The world boundaries serve as impenetrable bar-
riers to host movement, which conceptually could be oceans or political bound-
aries allowing immigration into and out of this world into adjacent worlds. The
adjustable epidemic parameters that control cell evolution and hence the emer-
gent and often unpredictable behaviour of the overall system are described in
the next section.

3.3 Adjustable Simulation Parameters

The following is a composite list of epidemic spread parameters as used by
existing epidemic models [17, 18], particularly those examining virus pathogens
that can survive outside the bodies of hosts. This is not an exhaustive list, but it
contains what can be believed to be the most significant factors that account for
the behaviour of an epidemic. Apart from the interaction radii, all the following
parameters are modelled using probabilities that directly impact the update
rules applied over the CA lattice. By changing the probabilities, the specific
characteristics of distinct diseases may be modelled. This paper will only discuss
those parameters which are a function of population density and dynamics, that
is, neighbourhood size, motion, vectored infection, and contact infection. The
other parameters are mentioned for completeness.

– neighbourhood radius
– motion probability
– immigration probability
– birth rate
– death rate
– virus morbidity
– vectored infection probability
– contact infection probability
– spontaneous infection probability
– recovery probability
– re-susceptible probability



Neighbourhood radius This parameter determines the size of the interaction
neighbourhood that a cell interrogates for state information. Our model uses
the square Moore neighbourhood whose area, n, is determined by an interaction
radius, r, as shown in Equation 1.

n = (2r + 1)2 (1)

There are two distinct interaction radii: motion and infection. The motion
radius defines the greatest distance, measured in cells, a host can move during a
time step. The infection radius is slightly different to the motion radius in that
it does not relate to hosts but to the virus pathogen. The infection radius defines
the greatest distance the virus pathogen can travel outside the body of a host on
its own. This quantity is used to model the spread of a virus via natural vectors
such as airborne droplets in influenza or vermin as in bubonic plague.

Motion probability The individuals in the world are permitted to move be-
tween cells. The motion probability determines the frequency of this motion. Our
model assumes homogeneous mixing within each cell, but the motion of hosts
between cells is governed by the motion probability parameter. For example, if
the motion probability, pmove, is set to 0.4, you would expect roughly two in five
hosts to shift from the cell they currently reside in to another cell within its mo-
tion neighbourhood. The success of a host’s inter-cell movement is dependent on
whether the destination cell has reached its carrying capacity. In this model, the
destination cell is selected randomly from the local interaction neighbourhood.

Vectored infection rate Apart from entering an otherwise ‘clean’ cell inside
a mobile infective host, the virus contagion can spread across cells using its nat-
ural spreading mechanisms. Such spread is known as vectored infection. For this
model, the velocity of inter-cell infection is controlled through the pinput param-
eter. The actual probability of spread, pvectored, is a function of the vectored
infection parameter provided by the user, pinput, and the density of susceptible
hosts in the local interaction neighbourhood. This is illustrated in Equation 2. A
high value for this parameter would represent a highly transmissible virus such
as one that was airborne or carried in bird droppings.



pvectored =
susceptible population

neighbourhood capacity
× pinput (2)

3.4 Cell update algorithm

The CA cell update function is used to evolve the new state of each cell. The
cell update function takes as arguments all the parameters outlined in the pre-
vious section along with the state information from the cells in the interaction
neighbourhood of the cell in question.

The cell update algorithm is performed in two phases: the movement phase
and the infection phase. It is important to note that the effects of the move-
ment phase are instantaneous, that is, cell populations are immediately updated
to reflect host traversals. During the infection phase, although implemented se-
quentially over the lattice, each cell evolves synchronously with all the others.

Movement phase

1. Select a random cell from the world.

2. For each of the individuals in the cell, randomly select a neighbouring cell
and move the individual into it. This movement is dependent on the motion
probability parameter described earlier and the destination cell not being
full.

3. Repeat from step one until all the cells in the world have been accounted
for.

Infection and recovery phase The ordering of events during the infection
and recovery phase are such that similar operations are performed consecutively,
that is, all operations affecting host population are dealt with before infections
are calculated. Other inter-leavings should be tried in order to examine possible
biases.

1. Select the first cell.

2. Deduct the ‘natural deaths’ from the cell population.

3. Deduct the deaths from virus morbidity.

4. Add to the population any newborns.

5. Add any immigrant population.

6. Compute inter-cell (vectored) infections.

7. Compute intra-cell (contact) infections.

8. Compute spontaneous infections.

9. Compute host recoveries.

10. Compute re-susceptibles.

11. Repeat from step one for the next cell until all cells have been accounted for.



This model does not take into account other parameters such as the latency
or incubation times illustrated in Figure 2. Latency is the lag between being in-
fected and becoming infective, and incubation is the delay between being infected
and becoming symptomatic. These times could be implemented by introducing
another state, for example ‘E’ for exposed hosts, who are infected but not infec-
tive [17].

4 Simulation Results

Here we present the results of two experimental scenarios using the model de-
scribed above. Emphasis is placed on the emergent patterns that are produced
by the model, particularly in response to the underlying spatial heterogeneity.
That is, where we capture geographical differences over the landscape and the
effects they have on the overall macroscopic system behaviour. These simulations
provide some evidence of CA’s usefulness for epidemic spread visualization.

4.1 Corridors of Spread

This experiment tries to emulate a real life landscape with imaginary town cen-
tres and transport links. Towns and roads are human constructed features that
attract high population densities. Conversely, the scenario could be depicting
non-cultural features, for example, rivers that promote development along their
shores or mountain ranges that limit settlement and population movement. Their
key attribute is their directed and linear shape rather than a wide uniform pop-
ulation density. Figure 2 shows the virtual landscape used in this experiment.
Each cell has a carrying capacity of 1000, with three ‘towns’ already at this

maximum. Two of these towns, the north-west one and the south-east one, start
with a 1:9 infective to susceptible ratio. The ‘transport links’ comprise a three
cell wide bar of susceptibles. Cells on the central axis of this bar have an ini-
tial susceptible population of 100, whilst the cells on either side have an initial
susceptible population of 75. The rest of the landscape comprises cells with 10
susceptibles in them. The town in the south-west corner contains 1000 suscepti-
bles and no infectives.

Parameter settings Table 1 lists the parameter values used in this scenario:
essentially all of the parameters are zero except for the infection radius, con-
tact infection probability, and vectored infection probability which are all equal
to one. These values capture a simplified environment where the population is
completely static geographically and demographically. The aim is to accelerate
infection spread to see the effects of population density on epidemic dynamics.

Results The results of exercising the model with the above disease-specific and
landscape-specific features are presented in the time lag map shown in Figure 3.
The lag map is basically a series of snapshots taken at t = 0, 20, 40, 60, 80,



Fig. 2. The synthetic landscape in this figure captures the tendency of settlement to
form around prominent cultural and geographical features. Here there are three points
of high population density – two of which are connected by a transport link. The link
itself has settlement developed along it. The north-west and south-east ‘towns’ both
contain 100 infectives and 900 susceptibles.

100, 200, 300. Each cell is represented by a square: black squares contain at least
one infective host and white squares contain only susceptible and recovered hosts.
Figure 3 shows the tendency of the epidemic to follow the lines of population
density to produce the ‘fuzzy cross’ pattern.
After 300 epochs, the top left outbreak has reached all four edges of the

map but the bottom right outbreak is yet to reach any. Notice that the epidemic
spreads outward along the arms or ‘roads’ before filling up the space between the
roads. This illustrates how a disease spreads over an area of higher population
density faster than over under or unpopulated areas, as we would expect.

4.2 Barriers to spread

This experimental scenario will show how a CA model can simulate the effects
of erecting barriers to slow or stop virus spread. As seen in the foot and mouth
disease epidemic in Great Britain during 2001, a key to slowing down disease
spread is restricting movement [19]. Other measures included the culling of live-
stock or the inoculation of livestock, so creating barrier areas through which the
virus cannot spread. These measures are simulated by incorporating ‘no spread
zones’ in the initial state of the CA lattice.
The starting distribution contains two ‘hot spots’ which have been segre-

gated from the rest of the landscape. One hot spot has a four square wide bar-
rier surrounding it, whilst the other has a one square wide barrier surrounding
it. Barriers are implemented as cells with zero carrying capacity. In Figure 4,



Fig. 3. A lag map showing the state of the epidemic at t = 0, 20, 40, 60, 80, 100, 200, 300.
Notice that the outbreak to the north-west is able to cover a greater distance than the
outbreak in the south-east because it has access to the road link and the population
associated with that link. Notice that the spread from t = 20 in the top left of the
map appears asymmetric. This is probably an artifact of the stochastic nature of this
model.



Parameter Value

Infection radius 1
Movement radius 0
Immigration rate 0.0
Birth rate 0.0
Natural death rate 0.0
Virus morbidity 0.0
Spontaneous infection rate 0.0
Vectored infection rate 1.0
Contact infection rate 1.0
Recovery rate 0.0
Resusceptible rate 0.0
Movement probability 0.0

Table 1. The parameter values for the ‘Corridors of spread’ scenario. All of the pa-
rameters are set to zero except for the ones that relate directly to population density.
That is, all are zero except for the infection radius, vectored infection rate, and contact
infection rate which are set to unity.

barriers are represented by black squares and all other (blank) squares contain
an equal number of hosts. There are two sources of infectives, initially confined
by ‘buffers’. The barriers restrict host movement and provide no hosts for any
viruses that try to cross.

Parameter settings Whilst it is quite simple to define a typical host popula-
tion, it is much more difficult to define a typical virus strain and keep generality.
To that end, although the values in Table 2 do not quantitatively represent a
particular virus, the ratios between the parameters need to be reasonable. Es-
sentially these numbers are just educated guesses at what a typical virus would
be. Having an interaction radius of two means that the barrier around the infec-
tives in the bottom right corner of Figure 4 means that hosts will still be able
to disperse into the surrounding environment.

Results The resultant epidemic spread is shown in the lag map of Figure 4. No-
tice that the virus is able to elude containment from the bottom right enclosure.
Despite the enclosure itself becoming free of infectives, the neighbouring country
side has become infective. The upper left enclosure is no longer contaminated
and neither is its surrounding hinterland.

5 Discussion

These scenarios provide evidence of the power of CA models as the underlying
theory for novel epidemic simulation and visualization techniques; differential
equation models provide no such capability. In Figure 3 we can clearly see where



Fig. 4. This lag map shows that buffer zones that are too narrow provide no resistance
to the spread of a virus.



Parameter Value

Infection radius 2
Movement radius 1
Immigration rate 0.01
Birth rate 0.02
Natural death rate 0.01
Virus morbidity 0.05
Spontaneous infection rate 0.0001
Vectored infection rate 0.2
Contact infection rate 0.4
Recovery rate 0.1
Resusceptible rate 0.001
Movement probability 0.001

Table 2. Epidemic spread parameter values for the containment scenario.

the infective towns are, where the densest populations are situated, as well as
identify where the infection velocity is greatest. Features such as leap frogging or
infilling where the epidemic appears to skip regions of land before coming back to
fill in the space can be seen in the lag map [20]. This behaviour was documented
in the foot and mouth disease epidemic in Great Britain in 2002 [21] and is due
to the stochastic nature of epidemic spread.

Prediction techniques such as these may be used in future to help public
health officials efficiently direct containment measures and medical services to
deal with the dynamics of infection spread.

6 Conclusion

These epidemic scenarios presented above provide an opportunity to demon-
strate the visualization capabilities of a graphical CA model. There are no new
epidemiological conclusions to be drawn from either of the two experiments –
they show exactly what our intuition would suggest. What is important is that
other statistics-based models, such as Markov chain models, do not appear to
illustrate such behaviours well. As far as sample data is concerned, very little is
available about the spatial behaviour of epidemics; much of infectious disease epi-
demiology is focussed on statistical data and trying to devise models that match
that data [7]. This is particularly the case with lag maps where data is gathered
during and after the epidemic, rather than being generated preemptively.

This research has shown the applicability of using CA models as a predictive
tool for epidemiologists. The next phase of this research is to utilize comprehen-
sive historical data to calibrate and validate models for specific epidemics.
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