
Innovations Syst Softw Eng (2005) 1: 25–40
DOI 10.1007/s11334-005-0002-4

ORIGINAL PAPER

Antonio Cerone · George J. Milne

Property verification of asynchronous systems

Received: 29 September 2004 / Accepted: 15 January 2005 / Published online: 11 March 2005
© Springer-Verlag 2005

Abstract We demonstrate a new modelling technique that
facilitates the description and the formal verification of tim-
ing properties of concurrent systems, such as asynchronous
digital hardware. We utilise a process algebra and its associ-
ated automatic verification system and construct models and
verification strategies using them. Utilising the hierarchical
nature of our approach, these techniques may then be applied
to larger systems, such as asynchronous circuits of commer-
cial complexity. The modelling techniques introduced permit
four distinct classes of objects, namely system components,
assumed constraints on their behaviour, properties requiring
proof and behaviour refinements, all to be modelled by a
process. We illustrate this approach by modelling the neces-
sary timing relationships required for the correct operation of
asynchronous micropipline stages and then verifying that the
resulting behaviour is correct. Finally, we demonstrate how
the same models are used to make some observations about
the performance and the timing properties of such designs.

Keywords Formal verification · asynchronous hardware ·
process algebra · constraint modelling

1 Introduction

The ability of a modelling formalism to accurately repre-
sent timing information is becoming increasingly significant
for the design of concurrent systems, such as those involv-
ing communication protocols and asynchronous digital logic.
Additional circuitry is usually required if a circuit that makes
no assumptions about signal transition timing is to be de-
signed to work correctly. In contrast, circuits that are designed

A. Cerone (✉)
International Institute for Software Technology
United Nations University, Macau SAR China
E-mail: antonio@iist.unu.edu
G. J. Milne
School of Computer Science and Software Engineering
The University of Western Australia, Perth, Australia
E-mail: george@csse.uwa.edu.au

utilising timing information may give superior performance;
however, this requires the ability to accurately specify and
verify the necessary timing properties to ensure that those
asynchronous designs will behave correctly.

In this paper, we address the modelling of timing prop-
erties using the Circal process algebra [21,22,29]. Specifi-
cally, we illustrate new techniques for constructing processes
that describe timing properties and timing relationships. The
approach adopted here, presented in a preliminary form in
previous papers [7,11], avoids the state-explosion problem
found when modelling time by using sequences of ticks to
model delays [2]. In the design of asynchronous circuits, for
example, the absolute duration of the delay intervals are less
important than the relationships between them. As an exam-
ple, consider Sutherland’s asynchronous micropipelines [28].
In a micropipeline, a major consideration for its correct oper-
ation is to ensure that the delay in the control paths is longer
than the delay in the data path. Our ability to express such a
relationship using an interval constraint technique avoids the
state-explosion issue that is associated with explicit timing
models [2,21].

This paper also illustrates how one class of object in our
modelling formalism, namely a process, is used to model
conceptually distinct objects that are required in the veri-
fication of concurrent systems where timing is significant,
such as with asynchronous-logic designs. These objects are
the system components, such as logic gates, the behavio-
ural constraints, such as assumed timing relationships, the
behavioural properties that require being proven and that
specify the correctness of the design, and behaviour refine-
ments, which introduce new actions to highlight the
behavioural aspects relevant to the property to be verified.
These distinct processes are manipulated by the Circal Sys-
tem [22,29], where they get composed by the concurrent
composition operator and where the behavioural equivalence
between processes is determined by an equivalence checker,
the basis of the Circal automatic-verification technique.

Unlike other approaches, we do not produce an applica-
tion-specific customised version of an existing process
algebra, as Joseph and Udding [18] do with CSP [19], for



26 A. Cerone and G. J. Milne

example. Rather, we develop suitable modelling techniques
that exploit the underlying primitives of the Circal process
calculus to build appropriate models and proof techniques
for the class of asynchronous systems under investigation.

Process algebras, such as Circal, CCS [23], CSP [19],
LOTOS [4], the π -calculus [24] and DI Algebra [18] are
powerful yet primitive. Their elegance results from the pres-
ence of only a limited number of primitive operators; that is
their simplicity. But to utilise them practically requires the
development of suitable modelling and verification method-
ologies that sit above the primitive constructs of the respective
formalisms. This need for modelling and proof infrastruc-
ture can also be found in assertional formalisms, such as
in the use of higher order logic for hardware specification
and verification, as exemplified in the HOL system [17]. The
research reported in this paper illustrates the type of tech-
niques necessary for using a process algebra, such as Circal,
to rigorously analyse timing relationships such as found in
asynchronous circuits.

This paper introduces techniques for modelling timing
relationships in process algebra and demonstrates the appro-
priateness of such techniques using two micropipeline
examples. It also introduces a technique for determining per-
formance by establishing the concurrency of activity among
system components rather than by using absolute numeric
values. Properties relating the simultaneity of activity can be
represented as processes and these performance properties
can be verified in the same way as behavioural correctness
properties.

The Circal process algebra has distinctive features that
allow the integration of correctness, timing and performance
properties [7]. The constraint-based modelling [30] method-
ology made available in Circal [22] supports both a natural
representation of timing constraints [9,7] and a verification
procedure that is entirely performed within the process alge-
bra framework [6,11]. The use of sets of simultaneous actions
within guards, a distinctive feature of the Circal formalism,
supports the characterisation of simultaneity and sequential-
ity between components, which is essential in the definition
of performance properties.

Formal methods have tended to concentrate on the ver-
ification of the behavioural correctness of software and/or
hardware systems. However, it may be argued that verifi-
cation should also include the rigorous analysis of the per-
formance of a system. This is especially the case for those
application domains, such as hardware systems, where per-
formance plays a key role in the choice between alternative
technologies.

Two major modelling approaches that have been used for
both verification and performance analysis are timed Petri
nets and timed process algebra [14]. A standard method to
introduce performance analysis into these two formalisms
is to associate time with the actions of the process algebra
and the transitions (or equivalently the residence time of the
places) of the Petri net. These times could be either determin-
istic or stochastic; in the analysis of the former, we can use
max-plus algebra [1], while the latter utilises stochastic Petri

nets and stochastic process algebra. Performance analysis is
then based on a derived Markov chain.

Adding time in this way to both Petri net and process alge-
bra models increases the complexity of the analytical proce-
dure compared with the untimed case. For example, Markov
chain analysis is particularly restricted by the state-explo-
sion problem. Some Petri net methods allow the abstraction
of time from the model where it is not significant, by having
zero time transitions, but most stochastic process algebras do
not allow abstraction with zero time transitions.

In previous papers [7,11], we introduced our approach
to the integrated verification of correctness, timing and per-
formance properties in concurrent systems, using the Cir-
cal process algebra and its mechanisation, the Circal System
[22,29]. In this paper, we give a thorough presentation of
our specification and verification methodology as applied to
distinct micropipeline designs. In our performance analysis,
we do not model explicit timing properties but rather deter-
mine performance characteristics in a more abstract fashion,
in terms of the degree of parallelism achieved among the
system components, so leading to a quantitative evaluation
of the throughput of the system.

In Sect. 2, we introduce the Circal process algebra. In
Sect. 3, we discuss our approach to modelling time using the
notion of timing intervals. In Sect. 4, we formally specify
the behaviour of an asynchronous micropipeline design as
well as construct a description of its implementation using
the Circal composition operator. The specific environmental
constraints and assumptions that are applied to each micro-
pipeline stage are also modelled as processes. In Sect. 5, we
show how to formally verify the correctness of a micropipe-
line stage. Then we analyse the performance features of both
designs under investigation and verify that the more complex
design improves micropipeline performance, as claimed by
Furber and Day [15]. Finally, we show how to formally ver-
ify that specific timing requirements are necessary for the
correct operation of the micropipeline.

2 The process algebra

Process algebras are mathematical formalisms for describ-
ing systems of interacting finite-state machines (FSMs). The
interaction is given by synchronising the transitions that oc-
cur in different FSMs. This can be done in several ways,
which differentiate the many process algebras that appear in
the literature [4,19,22,23].

2.1 A hierarchy of processes

Every process algebra has one (or more) parallel composition
operator(s), a hiding operator and a relabelling operator. The
combination of these operators allows for the structure of a
system to be modelled as a hierarchy of abstraction levels, as
shown in Fig. 1a.

Every box represents a process and is decomposed into
the components at the lower level to which it is connected. For



Property verification of asynchronous systems 27

Fig. 1 a Hierarchy of system components; b graphical representation of parallel composition with hiding and relabelling

example, process S1,2 consists of two components: process
S2,2 and process S2,3. Only the boxes that are leaves of the
hierarchy, not necessarily at the lowest level, explicitly encap-
sulate behaviours (S1,3, S2,2, S3,1, S3,2 and S3,3). In the fol-
lowing, we will call such leaves behavioural processes. Every
process interacts with other processes through communica-
tion ports. Interaction between processes occurs through the
actions that are associated with the ports. In Circal [22], CSP
[19] and LOTOS [4], a communication channel connects all
the ports that are labelled with the same action. In CCS [23],
actions are coupled in complementary pairs (input and output
actions) and a directed communication channel connects the
two ports that are labelled with complementary actions. In
our approach, we adopt the communication paradigm of Cir-
cal, CSP and LOTOS. Rather than formally introducing one
of these process algebraic languages, we will present all nec-
essary concepts in an intuitive graphical fashion.

If we look at the hierarchy given in Fig. 1a from a bot-
tom-up point of view, every process, apart from the root, is
embedded within the parent process by composing it in paral-
lel with other processes; by hiding some of the actions that are
used for interaction and possibly by relabelling other actions.
For example, S1,1, S1,2 and S1,3 are embedded within S0, as
shown in Fig. 1b. Communication ports are represented as
bullets on the outline of the box. Communication channels
are represented by lines connecting two ports, when only
two ports are involved in the communication, or by a bullet
connected with all the ports involved in the communication,
when the involved ports are more than two. The action asso-
ciated with a port is written next to the port, if that port is
not involved in any communication at the given abstraction
level, next to the bullet or to any line describing the commu-
nication in which the given port is involved, otherwise. The
embedding of a set of processes within the next abstraction
level is represented by a box surrounding the set of processes,
with new bullets (with the corresponding actions, which may
be relabelled, written next to them) on its boundary to rep-
resent all the ports that are not hidden after the composition.
These new bullets are connected by lines to any of the cor-
responding internal bullets. For example, in Fig. 1b, S1,1 and
S1,2 communicate through the channel labelled by action c,
S1,2 and S1,3 through the channel labelled by action d and
S1,1, S1,2 and S1,3 through the three-way channel labelled by

action b. Actions c and d are hidden in S0; a and b are visible
at the next abstraction level as ports of S0; e is relabelled
with c as a port of S0.

In this way, the box that embeds a set of processes repre-
sents the interface of the composite process. Every process
has a sort, which is the set of action names that label the
ports on the box that embeds its components. For example,
in Fig. 1b, S0 and S1,1 have sort {a, b, c}, S1,2 has sort {b, c, d}
and S1,3 has sort {b, d, e}. For a behavioural process, its sort
(or interface) must contain at least all the actions that occur
in the embedded behaviour.

2.2 Process behaviour

The parallel composition of behavioural processes may be
expanded into a global behaviour. Every state of the global
behaviour is given by the product of component states, one
for each component. The precise semantics of parallel com-
position depend on the specific process algebra involved. In
this paper, we consider the approach adopted by the Circal
process calculus [22], where every transition between states
is labelled with a (possibly empty) set of actions.

Given a set of processes and a set of transitions, one for
each process, the transitions of the set may synchronise if and
only if, for each action that belongs to the label of at least
one transition, the action does not occur in the label of a tran-
sition of the given set, then it does not belong to the sort of
the process to which such a transition belongs; here, caus-
ally independent actions are synchronised. If the transitions
of the set may synchronise, then some of these transitions
must synchronise if and only if there is at least one action in
the intersection of their labels; here, identical actions from
distinct component processes synchronise. When transitions
of different processes synchronise, the label of the transi-
tion of the composite process is the union of the labels of all
components.

For instance, if we composeS1,1,S1,2 andS1,3 in Fig. 2a–c,
then the transition labelled by {a, c} from A1,1 to A1,1
in S1,1, the transition labelled by {c, d} from A1,2 to B1,2 in
S1,2, and the transition labelled by {d} from A1,3 to B1,3 in
S1,3, may synchronise. The corresponding transition of the
composite process, which is represented in Fig. 2d, is from



28 A. Cerone and G. J. Milne

Fig. 2 a–c Interfaces and behaviours of S1,1, S1,2 and S1,3; d behaviour of the parallel composition of S1,1, S1,2 and S1,3; e behaviour of S0

A1,1 × A1,2 × A1,3 to A1,1 × B1,2 × B1,3 and is labelled by
{a, c, d} = {a, c} ∪ {c, d} ∪ {d}. Notice that, in Fig. 2a–c,
we have represented the sets that consist of a single action by
writing just the action name without brackets.

The behaviour of the composition of S1,1, S1,2 and S1,3
is given in Fig. 2d. Here, A′0 = A1,1 × A1,2 × A1,3, B ′0 =
A1,1×B1,2 ×B1,3 and C ′0 = A1,1×C1,2 ×A1,3. Notice that
the transition labelled by {a, c} from A1,1 to A1,1 in S1,1 must
synchronise with the transition labelled by {c, d} from A1,2
to B1,2 in S1,2. Analogously, the transition labelled by {c, d}
from A1,2 to B1,2 in S1,2 must synchronise with the transition
labelled by {d} from A1,3 to B1,3 in S1,3.

After hiding c and d and relabelling e with c, we obtain
the behaviour of S0, which is given in Fig. 2e.

2.3 Constraint-based modelling in Circal

In this section, we give a brief description of the Circal oper-
ators and their semantics and refer the reader to [2,21,22,
25] for further explanations. The syntax of Circal processes
is summarised by the following BNF expressions, where �
is a guard (consisting of single action a or the set of actions
in M), P is a process, D a process definition, A is the set of
possible actions and a, b ∈ A and I is a process variable:

M ::= a
∣
∣a M

� ::= a
∣
∣(M)

P ::= /\∣∣�P
∣
∣P + P

∣
∣P & P

∣
∣I

∣
∣P * P

∣
∣P -M

∣
∣

P(M)
∣
∣P [a/b]

D ::= I ← P

This syntax is a simplified form of the syntax implemented
in the Circal System [29].

Each Circal process has a sort associated with it, which
specifies the set of actions (ports) through which it may

interact with other processes. Every sort will be a nonempty
subset of A, the collection of all available actions.

The /\ constant represents a process that can participate
in no communication. This is a process that has terminated
or deadlocked.

In �P , the P process may be guarded by sets of simul-
taneously occurring actions. This is a key feature of Circal,
which greatly enriches the modelling potential of the algebra
in contrast with process algebras such as CSP [19], CCS [23]
and LOTOS [4], which only permit a single action to occur
at one computation instant.

A name can be given to a Circal process with the defi-
nition operator (←). Recursive process definitions, such as
P ← �P , are permitted.

The + operator defines an external choice, which is
decided by the environment where the process is executed,
whereas the & operator defines an internal choice, which
is decided autonomously by the process itself without any
influence from its environment. Internal choices appear to an
external observer as nondeterminism.

Given processes P and Q, the term P ∗Q represents the
process that can perform the actions of the subterms P and
Q together (composition). Any synchronisation that can be
made between two terms, due to some atomic action being
common to the sorts of both subterms, must be made; other-
wise, the actions of the subterms may occur asynchronously.

The terms P-M and P[a/b] define abstraction and
relabelling, respectively, in the usual way.

Using the textual syntax of Circal, the behaviour described
in Fig. 2d is defined as follows:

A′0 ← (a c d) B ′0 + b A′0
B ′0 ← (d e) C ′0
C ′0 ← b A′0

The composition operator of Circal provides synchroni-
sation among an arbitrary number of processes without the
removal of the synchronising events in the resultant behaviour.



Property verification of asynchronous systems 29

Fig. 3 a Level-based NOT gate; b transition-based NOT gate with input port initially low; c transition-based NOT gate with input port initially
high

This particular nature of the composition operator is exploited
by the constraint-based modelling methodology, which has
been used in several application domains, such as communi-
cation protocols [5,6], safety-critical systems and asynchro-
nous hardware [8].

When a process S of sort L is composed with a process
C of sort L′, such that L∩L′ �= ∅, that part of the behaviour
of S whose restriction to L ∩ L′ is not consistent with the
behaviour of C does not appear in the behaviour of S ∗ C.
This is equivalent to saying that C constrains S. As an exam-
ple, consider the process P of sort {a, b, c} and the process
C of sort {a, b, d} defined as follows:

P ← a P + b P + (a b) P + c P

C ← (a b) C + d C

The intersection of the sorts is {a, b} and C constrains P to
always perform a and b simultaneously.

TermP(M)defines a process-generation function, which
can be instantiated as an actual process by replacing formal
parameters in M with actual parameters.

2.4 Process models of distinct system artefacts

In our verification methodology, we utilise the core model-
ling object, namely a process, to model four quite distinct
artefacts. The first of these is when we model the physical
components of the system under investigation.

The second artefact that we model by a process, or pro-
cesses, are assumptions on the behaviour of the system. These
assumptions usually relate to context or environmental restric-
tions and generally simplify the system behaviour when com-
posed with it using the composition operator.

The third artefact that is modelled by a process is the
specific property, which we want to verify as holding in the
system and which is used to describe the notion of system
correctness.

The fourth artefact that is also modelled by a process is
a refinement of part of the behaviour of another process. By
composing a given process with a refinement process, we
extend the behaviour of the given process. Together with the
hiding operator, this allows the definition of a new view of
the system. In this paper, we will consider only a single type

of refinement, namely a time-interval refinement. Processes
may also model different artefacts at the same time; we will
see processes that are both refinements and assumptions.

2.5 Modelling circuit components

There are two main approaches in modelling digital hardware
in a process algebra or in any other event-based specification
formalism. The voltage level transitions in a digital system
may be modelled by focussing either on the actual value of
the voltage level or just on the changes of the level [22].

In the first approach, called level-based modelling, the
value of the voltage level is modelled by an event. We use a
Boolean port a to model a high voltage level, a	, and a low
voltage level, a
. Such ports have Boolean values and are
denoted by a solid diamond, �.

For example, a NOT gate with input a and output x is
given in the level-based modelling technique by the NOT lb
process generation function defined in Fig. 3a. Such a model
is an immediate translation of the truth table that gives the
values of the output for every combination of the inputs. The
level of the output depends directly on the levels of the inputs;
therefore, we can model the NOT gate using a process con-
sisting of just one state as the model is only ever in a single
state. The levels of the inputs and output are initialised by the
environment with which the gate interacts.

In the alternative approach, called transition-based mod-
elling, the change of the voltage level is modelled by an event.
We use a Boolean port a to model a change from low to high
voltage (event a+) and a change from high to low voltage
level (event a−). Such ports have Boolean values and are
denoted by a solid triangle. The value can be low, that is, the
port is ready to generate a rising signal (+), or high, that is,
the port is ready to generate a falling signal (−). The changes
of the level of the output depend not only on the changes of
the levels of the inputs but also on the current levels of those
inputs that possibly do not change. Therefore, the levels of the
inputs must be encoded within a state. Consequently, Bool-
ean ports must be initialised with values consistent with the
initial state. A port that is initially high is denoted by �; a
port that is initially low is denoted by �. The use of � or �
provides a structural notation to constrain the behaviour and



30 A. Cerone and G. J. Milne

Fig. 4 a Process generation function that models a delay; b s Process generation function that models simultaneous signals; c time-interval
refinement markevents(f rom, to, d)

improves readability. For example, a NOT gate with input
a, initially low, and output x is given in the transition-based
modelling technique by the NOT l process-generation func-
tion defined in Fig. 3b, whereas a NOT gate with input a,
initially high, and output x is given by the NOT h process-
generation function defined in Fig. 3c.

If we replace � with � in port a in Fig. 3b, we introduce
a constraint that is not consistent with the given behaviour.
In such a situation, the process cannot evolve and the resul-
tant behaviour is a deadlock. If, instead, we replace � with �
in Fig. 3b, we do not modify the behaviour of NOT l(a, x)
because the constraint to be receptive to only rising edges,
which is modelled by �, is already implicit in the model of
NOT l(a, x). Therefore, when � and � are consistent with
the behaviour, they can always be replaced by �, without
affecting the semantics.

3 Modelling time

Time can be incorporated in Circal by adding an event rep-
resenting the passage of time. This event can be introduced
as a global tick event [22] or as a local tick event [6]. In
such a model, circuit delays are represented as processes of
which the duration is related to a certain number of ticks [2,
22]. However, there are problems with this approach when
modelling delays in asynchronous circuits. First, the length
of each delay must be prespecified. Second, the unit of res-
olution of delays is related to the number of tick events and
thus modelling at a high timing resolution is associated with
a further state explosion. Third, the properties verified for a
specific example are limited to the resolution of the actual
delay models used.

In the design of bounded delay asynchronous circuits, the
actual delays in the circuits are less important than the rela-
tionships between delays. In a micropipeline, the major con-
sideration for correct operation of the circuits is to ensure that
the delay in the control path is not shorter than the delay in the
data path. Thus, it is natural to express delays as inequalities.
In Sect. 3.1, we present a delay model for introducing time in
asynchronous hardware [8,9]. The constraint-based method

introduced in Sect. 2.3 avoids the state explosion associated
with tick event-based delays and uses the natural expression
of the relative length of delays. In Sect. 3.2, we present how
to model time interval refinements. In Sect. 3.3, we show
how timing constraints are specified in such a model. Other
timing models suitable for specifying more complex timing
constraints on an explicit representation of time have been
presented in a previous paper [9].

3.1 The delay model

We consider a model of asynchronous circuits where there
is no delay inside gates, but all delays are represented using
special delay components. Such a component has an input
port on the left and an output port on the right and may be
modelled by the behaviour in Fig. 4a.

The D(a, b) process-generation function defines an arbi-
trary delay between the in andout signals. In fact, an arbitrary
number of external actions may occur between input a+ and
output b+ or between input a− and output b−.

This approach simplifies gate specification by separat-
ing the description of the functional behaviour from timing
issues. A gate with delay can therefore be modelled by an
undelayed gate whose output is connected to a delay compo-
nent as shown in Fig. 5a.

Notice that the output port of the gate and the input port
of the delay do not appear in the graphical representation.
Such a representation visually associates the delay with the
gate.

Moreover, a delay component can also model a delayed
wire connecting the output of a gate to the input of another
gate as in Fig. 5b. This is correct under the assumption that the
maximum propagation time through the wire is not greater
than the minimum time between two successive transitions
at any pin in the circuit. That is, only one signal can travel at
any time on the wire. In our delay model, a delayed wire is
undistinguishable from a delayed gate: it is just a matter of
interpretation. The absence of ports on the graphical repre-
sentation of a delayed wire highlights such an interpretation.



Property verification of asynchronous systems 31

Fig. 5 a Delayed gate; b Delayed wire; c Undelayed wire

To model delayless wires, we use the Sync(a, b)
process-generation function whose behaviour is modelled in
Fig. 4(b). Here, an input a+ is always simultaneous with
an output b+ and an input a− is always simultaneous with
an output b−. An undelayed wire is represented as a line con-
necting two ports having different names, as shown in Fig. 5(c).

3.2 Time-interval refinements

In previous work [22], delays are entirely introduced at the
circuit level and become part of the circuit implementation.
To simplify description, we choose to introduce just arbi-
trary delays at the circuit level and define time relationships
between them at a higher, more abstract descriptive level [8,
9]. Arbitrary delays, specified by instantiating the D process
generation function defined in Fig. 4a, are marked by pairs
of abstract events. Such abstract events are associated with
the physical events occurring in the circuit through the com-
position of the process that specifies the circuit with refine-
ment processes. The timing constraints are then specified at
a higher level and their constraining power is propagated
through the composition to the circuit level as described in
the next section. Abstract events are introduced by refine-
ment processes. A pure refinement process should take into
account all the possible sequential and simultaneous occur-
rences of the physical events to be marked. For example, pro-
cess-generation function MarkEvent (f rom, to, d) defined
in Fig. 4c marks the beginning of the time interval between
an occurrence of physical action f rom and an occurrence of
physical action to, with abstract action db, and the end of the
interval, with abstract action de. We have used the usual �
symbol, labelled by d, to denote the two possible values db

and de.
All refinements defined by process generation function

MarkEvents do not introduce any constraints in the phys-
ical system. However, refinement processes are often asso-
ciated with assumptions, which are constraints enforced by
the environment. If this is the case, the refinement process
does not model those sequential and simultaneous combina-
tions of physical events that cannot occur under the given
assumptions. Therefore, a single process can model both a
refinement and an assumption, as anticipated in Sect. 2.4.

Process-generation function MI1(f rom, to, mark) des-
cribed in Fig. 6a marks with the new mark abstract action the
time interval between physical actions f rom and to. Action
mark models a generic point in the time interval between

f rom and to. For this reason, it is called time-interval refine-
ment. Notice that MI1 works also as an assumption because
it implicitly forces f rom and to always to occur in sequence.

Process generation function MI1 marks the intervals gen-
erated by each sequence consisting of occurrences of f rom
and to. However, it might be useful to mark only some occur-
rences of the same physical action. For example, process-
generation function MI2 in Fig. 6b marks intervals between
f rom and to starting from the second occurrence of f rom
and to.

3.3 Timing constraints

We have said that, in asynchronous hardware, it is natural to
express the relationships between the delays as inequalities.
The delays that are compared are associated with different
paths; for example, the control path and the data path in a
micropipeline. The assumption that the delay in the control
path is not shorter than the delay in the data path is modelled
through the process-generation function shown in Fig. 7a,
where we have represented arrows connecting the same states
but labelled with different sets of actions by drawing just one
link with all the labels vertically stacked. This process-gener-
ation function is based on the assumption that the start of any
occurrence of the shorter delay (sb) is always simultaneous
with the start of an occurrence of the longer delay (lb). Under
such an assumption, the N initial state changes to the D state
only when sb occurs simultaneously with any of lb (start of
an occurrence of the longer delay) or lb and le (start of an
occurrence of the longer delay simultaneously with the end
of its previous occurrence). In the D state, the process waits
for se (end of the current occurrence of the shorter delay).

Using the time-interval refinements presented in Sect. 3.2,
timing constraints can be modelled in terms of processes
performing only abstract events. Timing constraints estab-
lish a time relationship among the abstract events, which
is then propagated by the time-interval refinements down
to the physical events and reduces the size of the system
model. Figure 7b shows a physical system S, where the
time occurring between events s1 and s2 is constrained to
be not less than the time occurring between events s3 and
s4. Time-interval refinement MarkEvents(s1, s2, p) marks
the occurrence of s1 with pb and the occurrence of s2 with
pe; time-interval refinement MarkEvents(s3, s4, q) marks
the occurrence of s3 with qb and the occurrence of s4 with
qe. Then timing constraint NotLessThan(p,q) constrains the



32 A. Cerone and G. J. Milne

Fig. 6 a Interval refinement process MI1; b Interval refinement process MI2

Fig. 7 a Timing constraint NotLessT han(p, q), b High-level modelling of timing constraints

duration modelled by abstract event p to be not less than the
duration modelled by abstract event q.

4 Asynchronous micropipelines

To demonstrate our new timing verification technique, we
utilise an asynchronous micropipeline circuit whose design
is related to the AMULET2 asynchronous RISC processor
[16], which has known performance advantages over exist-
ing embedded processors.

In a RISC processor, the instruction pipeline is composed
of logic stages and latches. Progress through a synchronous
pipeline is managed by the clock; once the logic has com-
pleted evaluation, all the latches are clocked at the same
time, simultaneously moving all instructions to the next pipe-
line stage. In an asynchronous micropipelined processor, the
evaluation of a pipeline stage is governed by local interactions
with its neighbours using a request acknowledge handshaking

protocol [15,16]. It is possible for one stage to be evaluat-
ing while, at the same time, a stage further on is transferring
an instruction to its neighbour. Thus, whilst the performance
of a synchronous pipeline is governed entirely by the clock
rate that can be achieved with a particular logic design, the
performance of an asynchronous pipeline depends instead on
the design of the handshaking control for each stage. In par-
ticular, if the asynchronous logic pipeline is to be as fast as
the synchronous one it must be possible for all logic stage
evaluations to overlap, as in the synchronous case.

Here, we present a detailed analysis of the correctness,
timing and performance of two distinct micropipelines whose
design is influenced by that of the AMULET2 asynchro-
nous RISC processor [15]. In both designs, the control logic
consists of a four-phase handshaking protocol with active
rising signals. We simplify the datapath by treating it as a
sequence of latches without interleaved logic stages, such
as found in real asynchronous micropipelines. This simpli-
fication, where the micropipeline reduces to a FIFO queue,
helps in the presentation of our modelling and verification



Property verification of asynchronous systems 33

Fig. 8 a STG of simple four-phase latch control circuit; b STG of semidecoupled four-phase latch control circuit

methodology. An earlier presentation of this approach was
given in previous papers [7,11].

4.1 Specification

The specifications of the single stages of the two latch con-
trol circuits we are going to model are given by the signal
transition graphs (STGs) [12] in Fig. 8, where:

– the dashed arrows denote the orderings that must be main-
tained by the environment (assumptions about the envi-
ronment);

– the solid arrows denote the orderings that must be ensured
by the circuit itself (properties of the circuit);

– a solid circle is attached to an arrow in order to denote that
the target of such an arrow is initially enabled to occur.

Rin and Rout define the input and output request signals.
Ain and Aout define the input and output acknowledgement
signals. The Lt latch control signal causes the data latch
to be open when low (Lt−) and closed when high (Lt+).
The STGs in Fig. 8 show that, when input data are available
(Rin+), the latch may close (Lt+) and then the input may
be acknowledged (Ain+); when the output data have been
acknowledged (Aout+), the latch may open again (Lt−). It
is the responsibility of the environment to ensure that

– an input acknowledgement signal (Ain+) will eventually
reset the input request (Rin−);

– the reset of the input acknowledgement (Ain−) will be
eventually followed by a new input request signal (Rin+);

– an output request signal (Rout+) will be eventually fol-
lowed by an output acknowledgement (Aout+);

– the reset of the output request (Rout−) will be eventu-
ally followed by the reset of the output acknowledgement
(Aout−).

These assumptions about the environment are denoted by
dashed arrows in Fig. 8. Notice that the assumptions must be
the same for both STGs.

4.2 Implementation

The STGs in Fig. 8 can be implemented as circuits using
informal or semiformal synthesis techniques. A possible
implementation of the STG in Fig. 8a is given in Fig. 9a
and a possible implementation of the STG in Fig. 8(b) is given
in Fig. 10a [15]. In the implementation in Fig. 9a, we have

Fig. 9 a Simple four-phase latch control circuit; b Process algebra
model of the simple four-phase latch control circuit

used a conventional Muller C-gate; in the implementation in
Fig. 9a, we have used two asymmetric Muller C-gates. The
methodology for implementing Muller C-gate in Circal has
been presented in previous work [10].

Once the gates have been defined as the basic compo-
nents, the whole circuit is specified by composing in parallel
the processes that define the gates, with additional processes
to define the delays in the gates or on the wires. For example,
the circuit in Fig. 9a is represented in the process algebra by
the Sts process defined in Fig. 9b and the circuit in Fig. 10a
is represented by the Std process defined in Fig. 10b.

5 Verification

5.1 Property verification

A correctness concept that can be readily characterised in
Circal is the behavioural equivalence P ∼= Q between two
processes, which is implemented by the Circal System [2].

However, in performing formal verification, equivalence
is often too strong a property requiring proof. For certain sys-
tems, verifying their correctness consists of determining that
certain properties hold, where these properties do not consti-
tute a complete specification. Concurrent systems frequently
require us to determine that certain time-dependent proper-
ties, known as temporal properties, hold. Here we consider
a subclass of temporal properties called safety properties,
which assert that “anything bad will never happen”.



34 A. Cerone and G. J. Milne

Fig. 10 a Semidecoupled four-phase latch control circuit; b Process
algebra model of the semidecoupled four-phase latch control circuit

The constraint-based modelling technique presented in
Sect. 2.3 supports a clear characterisation of safety proper-
ties. Let S be a process of sort L and P be a process of sort
L′ ⊆ L. Let us suppose that S models a physical system, then
P can model a safety property that might or might not hold
in S. If P constrains S, then the property represented by P
is not implicitly modelled in S; on the other hand, if P does
not constrain S, then the property represented by P is implic-
itly modelled in S, that is, the system satisfies the property.
Therefore, the verification methodology consists of checking
whether or not the process P that represents the safety prop-
erty to be verified constrains the process S that represents the
system.

The key point of the methodology is how to check whether
or not one process constrains another. This can be done by
an appropriate combination of parallel composition and the
equivalence-checking procedure, which is available in the
Circal System. In order to constrain a process S with another
process P , we just need to compose S and P in parallel.
Thus, if the constraint expressed by P is already implicitly
modelled in S, then the parallel composition of S and P must
be equivalent to S itself. Using the Circal syntax introduced
in Sect. 2.3, we denote the parallel composition by ∗ and
the equivalence checking by ∼=. Then, in order to verify that
the safety property modelled by process P holds on the sys-
tem modelled by process S, we need to check the following
equivalence:

S ∗ P ∼= S (1)

When the safety property only holds under the assumptions
defined by a process A, equivalence (1) becomes as follows:

A ∗ S ∗ P ∼= A ∗ S (2)

In this case, the property is verified for the constrained sys-
tem A ∗ S. In (2), A can be any assumption, including a
timing constraint, and P any property, including a perfor-
mance property. In this way, the verification schema given
by (2) integrates correctness, timing and performance veri-
fication [7]. Therefore, properties are expressed in the same
formalism as the model, an approach also adopted by for-
malisms based on propositional, first-order logic and higher
order logic [17], but which is not usually achievable in most
process algebra-based verification environments.

5.2 Correctness verification

The two STGs defined in Fig. 8 can be modelled in our pro-
cess algebra framework by defining a process for every single
relationship between pairs of signals connected by an arrow
and then by composing all these processes together. An ar-
row between signals pre and post without a solid circle
attached is defined by the AC process-generation function
represented in Fig. 11a. Signal post is not initially enabled.
Therefore, it must always occur either simultaneously or after
an occurrence of signal pre. An arrow between signals pre
and post with the solid circle attached is defined by the IC
process-generation function represented in Fig. 11b. Signal
post is initially enabled. Therefore, after the first occurrence
of post , every further occurrence of post must always occur
either simultaneously or after an occurrence of signal pre.
The dashed arrows in Fig. 8 are represented in terms of pro-
cesses in the same way as the solid arrows. However, these
processes play different roles in the specification: processes
that correspond to dashed arrows are assumptions, whereas
processes that correspond to solid arrows are properties. The
properties expressed by the STGs in Fig. 8 are safety proper-
ties; they assert that, for all possible executions, the defined
ordering of signals must not be violated. Such properties
can be verified using the verification schema given by (2)
in Sect. 5.1.

Let us apply the schema given by (2) to the correctness
verification of the circuit given in Fig. 9a, which is modelled
in Circal by the Sts process defined in Fig. 9b. We have to
define processes S, A and P in terms of the circuit model in
Fig. 9b and of the instantiations of the AC and IC process
generation functions that model the arrows of the STG in
Fig. 8a.

Process S is given by the Sts circuit model in Fig. 9b.
Process A is given by composing in parallel the instantia-
tions of AC and IC that represent the assumptions as shown
in Fig. 12a.

Here, we use a+ to denote a port that is receptive only to
rising edges and a− to denote a port that is receptive only to
falling edges. If in (2) we replace S by the Sts process, we can
automatically verify using the Circal System that the equiv-
alence is true, that is the single stage modelled by Sts meets



Property verification of asynchronous systems 35

Fig. 11 a Process algebra model of an STG arrow without solid circle; b Process algebra model of an STG arrow with a solid circle attached

Fig. 12 a Process A modelling the assumptions; b Process P modelling
the properties of Sts

the properties modelled by P under the assumptions mod-
elled by A. Therefore, the implementation given in Fig. 9a is
correct with respect to the specification given in Fig. 8a.

In order to verify the correctness of the circuit given in
Fig. 10a, we have to define S as the circuit given in Fig. 10b,
and A and P from the STG in Fig. 8b. We notice that A is
the same as before and P is shown in Fig. 13.

Analogously, we can use the Circal System to automat-
ically verify that the implementation given in Fig. 10(b) is
correct with respect to the specification given in Fig. 8(b).

Fig. 13 Process P modelling the properties of Std

5.3 Performance analysis

In the previous section, we have seen how to automatically
verify that the circuits defined in Fig. 9a and in Fig. 10a
operate correctly. Whilst they are both correct with respect
to the corresponding STG specifications, they show different
performance characteristics.

Several stages of our asynchronous micropipeline con-
troller may be connected in series, as shown in Fig. 14c.

Here, Sti , i = 1, 2, 3 is the ith control stage, which can
be instantiated either by Sts (given in Fig. 9b) or by Std-Ai

(Std given in Fig. 10b with Ai hidden).
The latches corresponding to the controller form a FIFO

of registers. The maximum potential parallelism for such a
FIFO occurs when all the latches are full at the same time.
Whether or not such a potential parallelism is effectively
attained depends on the handshake control protocol.

We define throughput as the number of data items that can
be passed through the pipeline per complete handshake cycle.
This definition is justified by the practical observation that
asynchronous pipeline throughput is limited by the elapsed
time for one handshake cycle in the control stages. A hand-
shake cycle for the ith stage is the sequence of events from
Rini+ to Aini−. Previous studies have shown that there is a
direct relationship between this throughput and the number
of pipeline stages that can be full at a particular time [31].

We notice that, in the STG in Fig. 8a, Aouti must be low
(and therefore the next latch empty, as in the system seen
in Fig. 14c) before Lti can go high (and this latch becomes
full). This is not the case for the STG in Fig. 8(b), where



36 A. Cerone and G. J. Milne

Fig. 14 a Process IA modelling the assumptions on the input; b Process OA modelling the assumptions on the output; c A 3-stage micropipeline
controller MP3

the input and output side of the latch control stage are partly
decoupled. A consequence of this decoupling is that a falling
signal Aouti– that acknowledges the falling signal Routi–
in a given handshake cycle is concurrent with a rising signal
Lti+ in the next handshake cycle. In this section, we analyse
the implication of this decoupling on the performance of the
micropipeline.

The stages of the micropipeline are connected together,
as in Fig. 14c. The IA process, defined in Fig. 14a, mod-
els the assumptions on the input; the OA process, defined in
Fig. 14b, models the assumptions on the output. In a previous
paper [7], we have shown how to automatically verify that the
input assumptions on the first stage and the output assump-
tions on the last stage imply input and output assumptions on
the intermediate stages.

We can carry out the automated analysis of the perfor-
mance of the micropipeline using the same methodology that
we have used in the previous section for the correctness proof
[7]. Now, the safety property to be used will catch some
performance aspects of the system rather than just the order-
ing of event occurrences. We want to express the performance
in terms of throughput. We then need a way to characterise
when a stage of the micropipeline is full. The ith stage starts
to be full when Lti goes high. At this point, the data in the
corresponding buffer is latched. It cannot be overwritten by
data coming from the (i− 1)th stage and is propagated on to
the (i + 1)th stage. When this data is latched in the (i + 1)th
stage, Aini+1 goes high and, as a result, Aouti goes high. At
this point, because the current data is latched in the (i+ 1)th
stage, the buffer of the ith stage can be overwritten. There-
fore, the time interval where the ith stage is full starts at Lti+
and ends at Aouti+.

We instantiate the MI1 process-generation function given
in Fig. 6a to mark with the new f ulli abstract action the
time interval between action Lti+ and action Aouti+. When

Fig. 15 a Property process generation function Ps; b Property process
generation function Pp

instantiations of MI1 are composed with a stage of the mi-
cropipeline, as shown in Fig. 16, we obtain a refinement of
the micropipeline where some time intervals are highlighted
by the abstract actions.

As we said in Sect. 3.2, MI1(Lti+, f ulli , Aouti+) works
not only as a refinement but also as an assumption. In fact,
it implicitly forces Lti+ and Aouti+ always to occur in
sequence. This assumption is acceptable if the delay inserted
between Routi (in the simple circuit) or Ai (in the semidecou-
pled circuit) and Lti is the same for every stage. If this is the
case, in the simple circuit, the time interval between Routi+
and Aouti+ is greater than the time interval between Routi+
and Lti+. In fact, the former consists of the internal delay
of the C-gate in the (i + 1)th stage plus the delay inserted
between Routi+1 and Lti+1, whereas the latter consists of
just the delay inserted between Routi and Lti . Analogously,
in the semidecoupled circuit, the time interval between Ai+
and Aouti+ is greater than the time interval between Ai+
and Lti+.

After refining the three-stage controller as shown in
Fig. 16, the resultant T R1,2 process may be readily analy-
sed to catch performance properties. The Ps(a, b) process-
generation function given in Fig. 15a models the property



Property verification of asynchronous systems 37

Fig. 16 Analysis of property Ps(f ull1, f ull2)

that actions a and b cannot synchronise. This means that
a and b can never occur simultaneously. We can compose
Ps(f ull1, f ull2) with the T R1,2 process, as in Fig. 16, and
check the equivalence

T R1,2 ∗ Ps(f ull1, f ull2) ∼= T R1,2 (3)

This is an instantiation of equivalence (1) in Sect. 5.2. If
equivalence (3) holds, then f ull1 and f ull2 never occur
simultaneously in T R1,2. This means that the time inter-
val between Lt1+ and Aout1+ and that between Lt2+ and
Aout2+ are disjoint. Therefore, it means that the first two
stages can never be full at the same time.

With the Circal System, we automatically verify that using
the simple control circuit as the basis of an asynchronous de-
sign, at best, alternate stages can be occupied at the same
time. In fact, the Ps property, which relates to concurrent
activity amongst multiple stages, holds for pairs of adjacent
stages, but not for pairs of alternate stages. Therefore, the
degree of parallelism achieved is only 50% of the potential
parallelism. This is equivalent to a throughput not greater
than 50% [31].

If we check property Ps on the micropipeline in Fig. 10,
the property does not hold for any pair of stages. This proves
that adjacent stages may be occupied at the same time. So
no upper bound of 50% is given to the throughput. However,
we would like to know how many stages can be occupied
at the same time. To achieve this, we need to use the view
V (f ull) in Fig. 17, in which the i-th stage is refined using
the MIn−i process, with n indicating the number of stages in
the micropipeline. The generic MIi process starts marking
the time intervals from the i-th occurrence. MI1 is defined in
Fig. 6a and MI2 is defined in Fig. 6b. MI3 may be defined

Fig. 17 Abstract view V (f ull) of a 3-stage controller for the analysis
of property Pp(f ull)

analogously. In this way we start marking intervals only when
the flow of data reaches the output of the micropipeline, that
is, when all stages may be occupied.

We want to verify whether this potential for full parallel-
ism among all stages can be effectively achieved. Because
f ull belongs to the sort of every instantiation of MIi , i =
1, 2, 3, in Fig. 17, then, following the composition rules intro-
duced in Sect. 2.2, all stages are full at the same time iff
the f ull action visibly occurs in the behaviour of V (f ull).
In particular, if there is an execution such that all stages
are full simultaneously in every handshake cycle, then the
V (f ull) view is equivalent to the Pp(f ull) process de-
fined in Fig. 15d, which models an infinite sequence of f ull
actions. Using the Circal System, we can prove that

V (f ull) ∼= Pp(f ull) (4)

and verify that a micropipeline of semidecoupled latch con-
trol circuits has a possible execution such that all stages
are full simultaneously in every handshake cycle. There-
fore, the semidecoupled latch control circuit shows a possible
throughput of 100%. Whether such a performace is effec-
tively attained depends on the environment, the surrounding
circuitry, in which the micropipeline operates. In a simple
FIFO, the maximum performance may be reached, but if the
micropipeline incorporates processing logic, there may be a
performance degradation [15].



38 A. Cerone and G. J. Milne

Latch

�Lt

•
DOut

•DIn

�
��

��
L0

� �
Lt+

�
��

��
L1

��

��
L2

� �
Lt−

�

�DIn �Lt+

� �DOut

�
�
�

�DIn

Fig. 18 Model of a latch

5.4 Timing analysis

In this section, we consider a full micropipeline stage con-
sisting of the simple control circuit and the latch component.

We model the flow of data through the stage by an input
action DIn and an output action DOut . We interpret an
occurrence of the DIn action as a change of the input of
the latch and an occurrence of the DOut action as a change
of the output of the latch. Process Latch is modelled as in
Fig. 18.

The latch is initially open (Lt is low) in state L0 and
waiting either for input on the DIn port, which takes to state
L1, or for action Lt+, which closes the latch and takes to
state L2. In L1, either the input is propagated to the output,
which results in action DOut , which takes it back to the ini-
tial state L0, or the latch is closed through action Lt+, which
takes it to state L2. We assume that the propagation time of
the data through the latch is less than the time between two
consecutive changes of the input data. Thus, no action DIn
can occur in L1. In state L2, the latch is closed and no input
can be propagated to the output. Therefore, all input changes
DIn occurring in L2 cannot be stored in the buffer element
and will not be followed by an output change DOut .

If, after the occurrence of an input change, we have reached
L2 directly from L0, then the input change has been propa-
gated to the output before the latch closes. This is modelled
by the sequence DIn DOut Lt+. Notice that the latch can
also close an arbitrary number of times even in the absence
of input changes. This is modelled by a sequence Lt− Lt+.

If we have reached L2 from L1, then the latch has been
closed before the input change has been propagated to the
output. This is modelled by the sequence DIn Lt+, which
cannot be followed by DOut . Therefore, in L2, only two
actions can occur: DIn, which can occur an arbitrary num-
ber of times so modelling further input changes, which are not
stored and will never result in corresponding output changes,
and Lt−, which opens the latches and takes it back to the
initial state L0.

We consider the version of control circuit given by the
Stn process, shown in Fig. 19, where there is only a delay on
the C-element, and such a delay has an identical length for

Fig. 19 Process algebra model of the simple four-phase latch control
circuit with matching delay

every stage. In this way, the delay that matches the evalua-
tion time disappears and, consequently, we have to assume a
null evaluation delay in the data flow, i.e. no processing logic
between stages.

We want to verify that the C-gate delay must be no shorter
than the latch data-in to data-out delay for the correct opera-
tion of the circuit [15]. As the correct operation of the circuit,
we intend now that the output request Rout+ is sent to the
next stage only if the data output DOut has already been
propagated to the next stage. Such a property is modelled
as process AC(DOut, Rout+), instantiation of the process-
generation function defined in Fig. 11a.

The verification is performed by using the technique pre-
sented in Sect. 3.3. As shown in Fig. 19, the Stn process is
composed with the Latch process to obtain a full micropip-
eline stage. The C-gate delay is defined in terms of abstract
event dC using the MarkEvents(Rin+, Rout+, dC) time-
interval refinement, while the latch data-in to data-out delay is



Property verification of asynchronous systems 39

defined in terms of abstract event dL using the
MarkEvents(DIn, DOut, dL) time-interval refinement.
The two delays are then correlated using process NotLess-
Than (dC, dL), which constrains the system to satisfy the
condition that the C-gate delay is no shorter than the latch
data-in to data-out delay. The composite process T CS, which
also includes process Sync to enforce the simultaneity of
Rin+ and DIn, meets the property modelled by process
AC(DOut, Rout+), as verified by checking the equivalence

T CS ∗ AC(DOut, Rout+) ∼= T CS,

where

T CS ← Sts ∗ Latch ∗ Sync(Rin+, DIn) ∗
MarkEvents(Rin+, Rout+, dC) ∗
MarkEvents(DIn, DOut, dL) ∗
NotLessT han(dC, dL).

If we remove the NotLessT han(dC, dL) timing constraint
from process T CS, then the equivalence does not hold any
more. This proves that the timing constraint is a sufficient
condition for the correct propagation of the data flow through
a single stage.

6 Discussion

In this paper, we have presented in detail a process alge-
bra-based approach for the integrated verification of correct-
ness, performance and timing in concurrent systems. The
verification procedure is entirely performed within the Circal
process algebra, without any recourse to other formalisms,
such as modal or temporal logic, stochastic models and dense
time models. Both correctness and performance properties as
well as timing assumptions are captured in the same verifica-
tion framework and are proven automatically. The automatic
checking mechanism is based on both the underlying seman-
tics [25] and a notion of testing equivalence [2]. If the auto-
matic equivalence check fails to match, the Circal System
[29] gives a diagnostic in terms of one event trace up to the
point where the mismatch has been found [22]. The capabil-
ity of expressing both model and properties within the same
formalism is common in axiomatic frameworks [17] but not
in process algebra-based frameworks. Some process alge-
bras do not support this approach due to their use of a binary
composition operator [23]. We exploit the multiway feature
of Circal composition in a manner analogous to logical con-
junction. Our approach is related to Roscoe’s approach using
CSP [27].

The approach has been applied to two four-phase asyn-
chronous micropipelines. Both micropipelines have been
proven to be correct using the automatic verification facility
in the Circal System, but here we are able to demonstrate that
they have different performace properties. The performance
of the circuit in Fig. 9a shows a throughput not greater than
50%. The performance of the semidecoupled circuit in Fig. 9c
shows a possible throughput of 100%, but such a performace

is effectively attained only in the appropriate operational con-
text; that is, it depends on the other circuit components con-
nected to it in its immediate, surrounding environment.

It is interesting to notice that the two performance prop-
erties that we have analysed in Sect. 5 can be seen as two
temporal properties that belong to two distinct classes of
properties requiring proof. For instance, the property that
“adjacent stages can never be occupied at the same time”
belongs to the class of safety properties that assert that “for
any possible execution, something is true at any time”. This
class is represented in branching time temporal logic by in-
stantiations of the formula ∀Gα. In our methodology, this
class of properties is verified by checking whether or not the
process that models the property constrains the system.

It is interesting to compare synchronous versus asynchro-
nous logic with respect to the verifiability. From the point of
view of correctness, the verification of the design of a syn-
chronous pipeline has been taken by most published work as
meaning that the logic stages perform the correct functions
and the control state machine is correct. The behaviour of
the clock is typically abstracted away by an assumption that
the clock rate will be set in such a way as to ensure that the
slowest stage has time to complete in both the data path and
the state-machine implementation. As a consequence of this
abstraction, the so-called set up and hold times of latches are
also ignored in the formal verification even though meeting
these constraints is required for correct operation. Thus, the
verification of synchronous circuits without consideration of
the clock timing issue is incomplete. In an asynchronous set-
ting, because every transition on every gate in the control
path could be significant, verification must be much more
complete to be useful at all.

In a micropipeline, there is also a requirement that the
control circuit has a greater delay than the logic in the data
path. This requirement allows the circuit designer to avoid
the dual rail area overhead in the data path [15,16]. It also
means that the data path of the micropipeline can be identical
with that of a synchronous design. Thus, the verification of
correct operation of a micropipeline reduces to verification of
the correct operation of the data path (using similar methods
as are currently used for synchronous circuits), verification
of the handshaking control path and verification of the timing
relationship between data path and control path.

A final remark is that our performance analysis is based
on a qualitative notion of performance, that is, the degree
of parallelism of the system components. Such an abstract
notion does not provide a complete performance evaluation
of the system under analysis. We have seen that the increase
of parallelism is associated with an increase in the size and
complexity of the handshake control circuit. This might lead
to a longer delay in the control circuit and, consequently, to
a lower system performance.

Acknowledgements We would like to thank Steve Furber for detailed
answers to our questions and Graeme Smith for helpful comments on
this work. This work has been supported in part by the Australian Re-
search Council, in part by a University of Queensland grant, in part by
UNU-IIST and in part by Sun Microsystems Laboratories, USA.



40 A. Cerone and G. J. Milne

References

1. Bacelli F et al. (1992) Synchronisation and linearity—algebra for
discrete event systems. Wiley, New York

2. Bailey A, McCaskill GA, Milne GJ (1994) An exercise in the auto-
matic verification of asynchronous designs. Formal Methods Syst
Des 4(3):213–242

3. Birtwistle G, Davis A (eds) (1995) Asynchronous digital circuit
design. Springer, Berlin Heidelberg New York

4. Bolognesi T, Brinksma E (1987) Introduction to the ISO specifica-
tion language LOTOS. Comput Netw ISDN Syst 14(1):25–59

5. Cerone A, Cowie AJ, Milne GJ, Moseley PA (1996) Description
and verification of a time-sensitive protocol. Technical report CIS-
96-009, University of South Australia, School of Computer and
Information Science, Adelaide, Australia

6. Cerone A, Cowie AJ, Milne GJ, Moseley PA (1997) Modelling a
time-dependent protocol using the Circal Process Algebra. Lecture
Notes in Computer Science, Vol 1201. Springer, Berlin Heidelberg
New York, pp 124–138

7. Cerone A, Kearney DA, Milne GJ (1998) Integrating the verifi-
cation of timing, performance and correctness properties of con-
current systems. In: Proceedings of the international conference
on application of concurrency to system design (CSD’98), IEEE
Comp Soc Press, pp 109–119

8. Cerone A, Kearney DA, Milne GJ (1997) Verifying bounded delay
asynchronous circuits using time relationship Constraints. Techni-
cal Report CIS-97-012, University of South Australia, School of
Computer and Information Science, Adelaide, Australia

9. Cerone A, Milne GJ (1997) Specification of timing constraints
within the circal process algebra. In: Proceedings of AMAST’97,
Lecture Notes in Computer Science, Vol. 1349. Springer, Berlin
Heidelberg New York, pp 108–122

10. CeroneA, Milne GJ (1999) Modelling a subclass of CMOS circuits
using a process algebra. In: Proceedings of the 6th annual Aus-
tralasian conference on parallel and real-time systems (PART’99).
Springer, Berlin Heidelberg New York, pp 386–397

11. Cerone A, Milne GJ (2000) A Methodology for the formal anal-
ysis of asynchronous micropipelines. In: Proceedings of FMCAD
2000, Lecture Notes in Computer Science, Vol 1954. Springer,
Berlin Heidelberg New York, pp 246–262

12. Chu TA, Leung CKC,Wanuga TS (1985)A design methodology for
concurrent VLSI systems. In: Proceedings of ICDD, pp 407–410

13. Dill DL (1989) Trace theory for automatic verification of speed
independent circuits. MIT, Cambridge

14. Donatelli S, Hillston J, Ribaudo M (1995) Comparison of perfor-
mance evaluation process algebra and generalized stochastic Petri
nets. In: Proceedings of the 6th international work on Petri nets and
performance models. IEEE Comp Soc Press

15. Furber SB, Day P (1996) Four-phase micropipeline latch con-
trol circuit. IEEE Trans Very Large Scale Integration (VLSI) Syst
4(2):247–253

16. Furber SB, Lin J (1996) Dynamic logic in four-phase micropipe-
lines. In: Proceedings of the 2nd international symposium on ad-
vanced research in asynchronous circuits and systems. IEEE Comp
Soc Press

17. Gordon MJC, Melham TF (1993) An introduction to HOL—a the-
orem proving environment for higher order logic. Cambridge Uni-
versity Press

18. Joseph MB, Udding JT (1990) An algebra for delay-insensitive
circuits. In: Proceedings of the workshop on computer-aided veri-
fication

19. Hoare CAR (1985) Communication sequential processes. Inter-
national Series in Computer Science. Prentice Hall, Englewood
Cliffs, New Jersey

20. Mead C, Conway L (1980) Introduction to VLSI systems. Addi-
son-Wesley, Menlo Park

21. Milne GJ (1991) The formal description and verification of hard-
ware timing. IEEE Trans Comput 40(7):811–826

22. Milne GJ (1994) Formal specification and verification of digital
systems. McGraw-Hill, New York

23. Milner R (1984) Communication and concurrency. International
Series in Computer Science. Prentice Hall, Englewood Cliffs, New
Jersey

24. Milner R, Parrow J, Walker D (1992) A calculus of mobile pro-
cesses, part I and II. Inf Comput 100(1):1–40, 41–77

25. Moller F (1989) The semantics of Circal. Technical Report HDV-
3-89, University of Strathclyde, Department of Computer Science,
Glasgow

26. Molnar CE, Fang TP, Rosenberger FU (1985) Synthesis of delay-
insensitive modules. In: Proceedings of the 1985 Chapel Hill con-
ference on advanced research in VLSI, pp 67–86

27. Roscoe AW (1997) The theory and practice of concurrency. Pren-
tice Hall, Englewood Cliffs, New Jersey

28. Sutherland IE (1989) Micropipelines. Com ofACM 32(6):720–738
29. UWA–CSSE (2005) The Circal System, Web page. Available via

http://www.csse.uwa.edu.au/FormalSpecification/CircalSystem/
30. Vissers CA, Scollo G, van Sinderen M, Brinksma E (1991) Speci-

fication styles in distributed systems design and verification. Theor
Comput Sci 89:179–206

31. Williams T (1992) Analyzing and improving the latency and
throughput performance on self-timed pipelines and rings. In: Pro-
ceedings of the IEEE international symposium on circuit and sys-
tems. IEEE Comp Soc Press, New York


