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Abstract. This paper presents an approach for capturing the behaviour
of disease spread in a tractable model. More specifically, by embed-
ding spatial population information into the cells of a cellular automa-
ton, accurate representations of disease spread may be produced. Non-
homogeneity is easily introduced into the implicitly discretized landscape
of a cellular automaton, contributing to the accuracy of such models and
overcoming some of the simplifying assumptions of homogeneity found
in earlier models. The need to develop and test more effective disease
containment measures inspires the search for new and more accurate
models.

1 Introduction

As stated by Ferguson [1], mathematical modelling is the only way to analyse
the effectiveness of different disease control strategies. Simulation is the obvious
choice since real life experimentation is impractical. An epidemic spread model
that provides life-like results and reconfigurable parameters is an invaluable tool
for use in developing outbreak contingency plans. Given the costs of outbreaks
as foot-and-mouth disease (FMD) in the United Kingdom [2, 3], it is desirable to
know beforehand whether vaccination or culling interventions are worthwhile.

There have been four recent studies of the spread dynamics of the smallpox
virus [1]. Each study set out to determine the best containment strategy for
smallpox. Unfortunately, rather than providing a definitive answer, each study
recommended a different policy for optimally controlling such outbreaks. This
suggests that more research needs to be directed into the field of epidemic mod-
elling and that there may be no general all-purpose containment strategy, rather
distinct outbreaks need tailored policies. Virtual simulation of outbreaks there-
fore provide a practical means to discover and refine these policies. Of particular
interest are disease spread models that capture host mobility, spatial population
heterogeneity as well as disease biology.

Most existing epidemic models, particularly those using ordinary differential
equations (ODEs) assume the host landscape is homogeneous [4]. That is, hosts
are taken to be distributed evenly throughout the landscape and mixed in well
with one another. This is a major oversight since hosts are rarely found to be



equidistantly spaced and unmoving. Partial differential equation models intro-
duce diffusion terms to model heterogeneous mixing but still treat populations
as continuous entities rather than comprising discrete interacting hosts. There is
need for models which take into account the spatial conditions of a landscape to
improve model accuracy. It is therefore claimed that by using a discretized ap-
proach, such as a cellular automaton, we can capture both the local interactions
of hosts and the effects of a heterogeneous population landscape into a single
more realistic disease spread model.

2 Our Model

The main focus of our model is to capture the effects of geography on an epi-
demic’s emergent behaviour. Of particular interest is the uneven distribution of
hosts over the landscape caused by topographic and demographic heterogene-
ity. In this section, we discuss how we have encoded this heterogeneity into an
automaton’s cells so as to build a model that more closely reflects nature. We
have adopted the widely used SIR framework to describe the disease state of
host individuals [5]. In this framework, hosts are designated susceptible, infec-
tive, or recovered depending on whether they are healthy, diseased, or immune
respectively.

2.1 Cell definition

In contrast to traditional CA, our model allows each cell to accommodate a
variable number of hosts rather than just one static host. This structure is sim-
ilar to that found in lattice-gas cellular automata [6]. Consequently, the state
of each cell is completely defined by its number of susceptible, infective, and
recovered hosts. Each cell has another parameter, a maximum carrying capacity,
which denotes the maximum number of hosts a cell can contain. The landscape
is therefore discretized into equal-sized cells whose populations and carrying ca-
pacities may vary differentially from cell to cell. The local population density is
therefore defined as a cell’s population divided by its carrying capacity.

By encoding cell population densities into the cell definition we can use this
information to modulate the rate of spread to neighbouring cells. Note that
disease spread can be due to both direct disease transmission at cell boundaries
and through increased infective host movement between cells. Our CA based
model captures both disease and host dynamics.

As implied by the above description, the number of hosts in a particular cell
can vary with time; the carrying capacity however, remains constant. Increases
and decreases in local cell population which correspond to births, deaths, and
movement of hosts over the landscape are also included in the model. Although
it is possible to have differing population densities with a neighbourhood of cells,
it is assumed that within each cell, the population is well-mixed. That is, during
each time step, all the hosts sharing a particular cell will come into contact at
least once.



The carrying capacity of a cell is used as a mechanism to limit the movement
of hosts between cells. Overcrowding is prevented since the number of newborns
per epoch, discussed later, is conditional on a cell not exceeding its carrying
capacity. Although the effect of the land’s carrying capacity is not directly en-
forced in nature, carrying capacities are a straightforward way to encourage or
discourage the motion of individuals between cells.

The cells are tessellated in a square grid with straight, non-penetrable bound-
aries. These boundaries are likened to physical boundaries found in nature such
as oceans or mountain ranges, or political boundaries over which hosts can ‘im-
migrate’ out of the landscape in question. The immigration and emigration of
hosts is combined with the increases and decreases in host populations deter-
mined by birth and death probability parameters. Such births and deaths are
completely independent of disease related parameters such as pathogen morbid-
ity and affect susceptible, infective, and recovered hosts alike. It is assumed that
there is no vertical vectoring of disease, that is, parents do not pass the disease
directly to their offspring at birth.

Our model also uses two distinct neighbourhood radii for host and pathogen
movement respectively; both are 8-connected Moore neighbourhoods. In our
model, the two ways a cell can become contaminated are if an infective host
moves in from an adjacent cell, or the pathogen, by its own spread mechanisms
outside a carrier, infects a formerly susceptible host. In this way, we have mod-
elled two kinds of heterogeneity: the spatial heterogeneity of the population due
to host movement, and also the biological heterogeneity due to variations in
disease presence among hosts.

2.2 Epidemic spread parameters

As discussed previously, there are two kinds of epidemic spread factors that we
have incorporated into our model: those related to the disease pathogen, and
those related to host demographics. Disease parameters include infectiousness,
morbidity, and immunity; demographic parameters include population density
and host movement. These parameters have featured separately in some earlier
epidemic studies [7, 8], but we have aimed to capture several key aspects of
disease spread into one composite model.

2.3 Cell update algorithm

Similar to the LGCA model proposed by Fukś and Lawniczak [6], the cell update
algorithm is performed in two phases: the infection phase and the randomiza-
tion phase. On a cell-by-cell basis, the encoded data relating to factors such as
morbidity, mobility, contagiousness, and immunity is used to update the SIR
characteristics of the CA lattice. Interleaved between the infection phases are
randomization phases which model the movement of hosts between CA cells.
Such movement is limited by the size of the CA interaction neighbourhood and
cell carrying capacities. The interaction neighbourhood can be of any configura-
tion; we have chosen the traditional 8-connected Moore neighbourhood. Specific



information about the interactions between cells, such as cyclic host movement,
can be very easily encoded as different interaction neighbourhood [9]. Therefore
in contrast to the uniform mixing found in ODE models, we can model localized
host movement.

Currently, our model does not take into account other parameters such as
latency or incubation time [10]. Latency is the lag between being infected and
becoming infective, and incubation is the delay between becoming infected and
becoming symptomatic. These times can be implemented by introducing further
states, say ‘E’, to represent those hosts exposed and infected with the pathogen
but not yet infective or transmissive. Including this or other states into our
model is straightforward since such a change implemented by simply modifying
the finite state automata populating the CA lattice.

3 Experimental Scenarios

In this section we describe two experimental scenarios and examine some of
the results that our composite epidemic model produced under simulation. The
purpose of these scenarios is to show how a cellular automata approach can be
used to accurately simulate disease spread, needing only to define localized cell
interactions. It is also interesting that due to the intrinsically graphical nature of
cellular automata, no further processing of results is needed in order to visualize
the resultant disease spread patterns.

3.1 Corridors of spread

This experiment tries to emulate a real life landscape with imaginary town cen-
tres and transport links. Towns and roads are human constructed features and
attract high and patterned population densities. Of particular significance is
that rather than having flat and uniform population density profiles, settlements
around cultural features generally have a directed or linear shape.

In this scenario, each cell has been initialized to have a carrying capacity of
1000, with three ‘towns’ set to this maximum. Two of these towns, on in the
northwest and another in the southeast, start with a 1:9 infective to susceptible
ratio. There are also ‘transport links’ comprising a dense line of susceptibles
running between each of the ‘towns’. Cells on this line have an initial suscepti-
ble population of 100, whilst the cells on either side have an initial susceptible
population of 75. The rest of the landscape comprises cells with 10 susceptibles
in them. The town in the southwest corner contains 1000 susceptibles and no
infectives.

Parameter settings The primary aim of this scenario is to highlight the fact
that disease spread generally occurs faster in regions of high host density. Conse-
quently, to isolate the effects of the heterogeneous landscape, host movement is
turned off for this scenario. This is done to preserve the population density pro-
file for the duration of this experiment. The probability of transmission between



hosts has been set to one. This means that there is 100% chance of a susceptible
host becoming infective after sharing a cell with at least one infective host during
a time step. This has been done to accelerate the rate of infection spread and
magnify the effect of population density on epidemic dynamics for illustrative
purposes.

Results The results of executing our model with the above-mentioned param-
eters are presented in the time lag map shown in Fig. 1. The lag map is a series
of snapshots taken at t = 0, 20, 40, 60, 80,
100, 200, 300. Each cell is represented by a square: black squares contain at least
one infective host and white squares contain only susceptible and recovered hosts.
Figure 1 shows the tendency of the epidemic to follow the lines of population
density to produce the ‘fuzzy cross’ pattern.

After 300 epochs, the top left outbreak has reached all four edges of the
map but the bottom right outbreak is yet to reach any. Notice that the epidemic
spreads outward along the arms or ‘roads’ before filling up the space between the
roads. This example illustrates how disease spreads over areas of higher popula-
tion density more rapidly than unpopulated areas, as expected from knowledge
of known disease spread. Consequently, we can conclude that we have satisfacto-
rily modelled the relationship between propagation delay of a disease and local
population density.

3.2 Barriers to spread

This experimental scenario depicts how a CA model can used to simulate the
effects barrier containment to control disease spread. As seen in the foot-and-
mouth disease (FMD) epidemic in Great Britain during 2001, a key to slowing
down disease spread is restricting host movement [11]. Culling of livestock to
create barrier areas over which FMD cannot spread was the main eradication
technique. These measures are simulated by incorporating ‘no spread zones’ in
the initial state of the cellular automaton’s lattice.

The starting distribution contains two ‘hot spots’ which have been segregated
from the rest of the landscape. One hot spot has a four square wide barrier
surrounding it, whilst the other has a one square wide barrier surrounding it.
Barriers are implemented as cells with zero carrying capacity. In Fig. 2, barriers
are represented by black squares and all other (blank) squares contain an equal
number of hosts. The grey squares depict the two sources of infectives, both of
which confined by ‘buffers’. The barriers restrict host movement and provide no
hosts for pathogens to infect and escape.

4 Conclusion

Accurate disease spread models are necessary for the testing of disease con-
tainment measures in the hope of reducing the economic and health impacts
of disease outbreaks. We have presented an epidemic model which captures in



Fig. 1. A lag map showing the state of the epidemic at t = 0, 20, 40, 60, 80, 100, 200, 300.
Notice that the outbreak to the north-west is able to cover a greater distance than the
outbreak in the southeast because it has access to the road link and the population
associated with that link. Notice that the spread from t = 20 in the top left of the
map appears asymmetrical. This is probably an artifact of the stochastic nature of this
model.



Fig. 2. This lag map shows that buffer zones that are too narrow provide no resistance
to the spread of the pathogen.



a CA-like discrete framework, realistic patterns of disease spread. More specif-
ically, a cellular automaton approach has been used to model discrete areas of
landscape and non-homogeneous automata states are used to capture the effects
of spatial heterogeneity. Such heterogeneity is due to variations in local pop-
ulation density compounded by host movements. Few existing models encode
spatial heterogeneity into their mechanics; our approach shows promise for the
development of accurate and tractable cellular automata based disease spread
models suitable for simulation.

Two scenarios have been presented which demonstrate how a cellular au-
tomata model can be initialized with a specific configuration to run hypothet-
ical “what if?” games. The first scenario demonstrated the successful encoding
of population density effects into the epidemic model whereby disease spread is
accelerated in areas of high density and slowed in sparsely populated regions.
The second scenario depicts how our cellular automata model simulates the ef-
fectiveness of different disease containment strategies. These two scenarios have
reproduced known patterns of spread, and thus contribute to determining the
efficacy of a cellular automata modelling approach to disease spread.
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